• Title/Summary/Keyword: powder

Search Result 17,149, Processing Time 0.038 seconds

Comparison of gut microbial diversity of breast-fed and formula-fed infants (모유수유와 분유수유에 따른 영아 장내 미생물 군집의 특징)

  • Kim, Kyeong Soon;Shin, Jung;Sim, JiSoo;Yeon, SuJi;Lee, Pyeong An;Chung, Moon Gyu
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.268-273
    • /
    • 2019
  • The intestinal microbiomes vary according to the factors such environment, age and diet. The purpose of this study was to compare the gut microbial diversity between Korean infants receiving breast-fed milk and formula-fed milk. We analyzed microbial communities in stool samples collected from 80 Korean infants using next generation sequencing. Phylum level analysis revealed that microbial communities in both breast-fed infants group (BIG) was dominated by Actinobacteria ($74.22{\pm}3.48%$). Interestingly, the phylum Actinobacteria was dominant in formula-fed infants group A (FIG-A) at $73.46{\pm}4.12%$, but the proportions of phylum Actinobacteria were lower in formulafed infants group B and C (FIG-B and FIG-C) at $66.52{\pm}5.80%$ and $68.88{\pm}4.33%$. The most abundant genus in the BIG, FIG-A, FIG-B, and FIG-C was Bifidobacterium, comprising $73.09{\pm}2.31%$, $72.25{\pm}4.93%$, $63.81{\pm}6.05%$, and $67.42{\pm}5.36%$ of the total bacteria. Furthermore, the dominant bifidobacterial species detected in BIG and FIG-A was Bifidobacterium longum at $68.77{\pm}6.07%$ and $66.85{\pm}4.99%$ of the total bacteria. In contrast, the proportions of B. longum of FIG-B and FIG-C were $58.94{\pm}6.20%$ and $61.86{\pm}5.31%$ of the total bacteria. FIG-A showed a community similar to BIG, which may be due to the inclusion of galactooligosaccharide, galactosyllactose, synergy-oligosaccharide, bifidooligo and improvement material of gut microbiota contained in formula-milk. We conclude that 5-Bifidus factor contained in milk powder promotes the growth of Bifidobacterium genus in the intestines.

Evaluation of the Anti-oxidant Activity of Pueraria Extract Fermented by Lactobacillus rhamnosus BHN-LAB 76 (Lactobacillus rhamnosus BHN-LAB 76에 의한 Pueraria 발효 추출물의 항산화 활성 평가)

  • Kim, Byung-Hyuk;Jang, Jong-Ok;Lee, Jun-Hyeong;Park, Ye-Eun;Kim, Jung-Gyu;Yoon, Yeo-Cho;Jeong, Su Jin;Kwon, Gi-Seok;Lee, Jung-Bok
    • Journal of Life Science
    • /
    • v.29 no.5
    • /
    • pp.545-554
    • /
    • 2019
  • The phytochemical compounds of Pueraria, a medicinally important leguminous plant, include various isoflavones that have weak estrogenic activity and a potential role in preventing chronic disease, cancer, osteoporosis, and postmenopausal syndrome. However, the major isoflavones are derivatives of puerarin and occur mainly as unabsorbable and biologically inactive glycosides. The bioavailability of the glucosides can be increased by hydrolysis of the sugar moiety using ${\beta}$-glucosidase. In this study, we investigated the antioxidant effects of a Pueraria extract after fermentation by Lactobacillus rhamnosus BHN-LAB 76. The L. rhamnosus BHN-LAB 76 strain was inoculated into Pueraria powder and fermented at $37^{\circ}C$ for 72 hr. The total polyphenol content of the Pueraria extract increased by about 134% and the total flavonoid content increased around 110% after fermentation with L. rhamnosus BHN-LAB 76 when compared to a non-fermented Pueraria extract. Superoxide dismutase-like activities, DPPH radical scavenging, and ABTS radical scavenging increased by approximately 213%, 190%, and 107%, respectively, in the fermented Pueraria extract compared to the non-fermented Pueraria extract. Fermentation of Pueraria extracts with L. rhamnosus BHN-LAB 76 is therefore possible and can effectively increase the antioxidant effects. These results can be applied to the development of improved foods and cosmetic materials.

Increased Anti-oxidative Activity and Whitening Effects of a Saposhnikovia Extract Following Bioconversion Fermentation using Lactobacillus plantarum BHN-LAB 33 (Lactobacillus plantarum BHN-LAB 33의 생물전환공정을 통한 방풍 발효 추출물의 항산화 활성 및 미백 활성 증대 효과)

  • Kim, Byung-Hyuk;Jang, Jong-Ok;Lee, Jun-Hyeong;Park, YeEun;Kim, Jung-Gyu;Yoon, Yeo-Cho;Jeong, Su Jin;Kwon, Gi-Seok;Lee, Jung-Bok
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1208-1217
    • /
    • 2019
  • Saposhnikovia has been used as a traditional medicinal herb in Asia because of the reported anti-inflammatory, anti-allergic rhinitis, pro-whitening, anti-atopy, anti-allergy, and anti-dermatopathy effects of the phytochemical compounds it contains. In this study, we investigated the antioxidant effects of a Saposhnikovia extract after fermentation by Lactobacillus plantarum BHN-LAB 33. Saposhnikovia powder was inoculated with L. plantarum BHN-LAB 33 and fermented at $37^{\circ}C$ for 72 hr. After fermentation, the total polyphenol content of the Saposhnikovia extract increased by about 14%, and the total flavonoid content increased by about 9%. The superoxide dismutase-like activities, DPPH radical scavenging, ABTS radical scavenging, reducing power activity, and tyrosinase inhibition activity also increased after fermentation by approximately 70%, 80%, 45%, 39%, and 44%, respectively. The results confirmed that fermentation of a Saposhnikovia extract by L. plantarum BHN-LAB 33 is an effective way to increase the antioxidant effects of the extract. The bioconversion process investigated in this study may have the potential to produce phytochemical-enriched natural antioxidant agents with high added value from Saposhnikovia matrices. These results can also be applied to the development of improved foods and cosmetic materials.

Nanoscale Pattern Formation of Li2CO3 for Lithium-Ion Battery Anode Material by Pattern Transfer Printing (패턴전사 프린팅을 활용한 리튬이온 배터리 양극 기초소재 Li2CO3의 나노스케일 패턴화 방법)

  • Kang, Young Lim;Park, Tae Wan;Park, Eun-Soo;Lee, Junghoon;Wang, Jei-Pil;Park, Woon Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.83-89
    • /
    • 2020
  • For the past few decades, as part of efforts to protect the environment where fossil fuels, which have been a key energy resource for mankind, are becoming increasingly depleted and pollution due to industrial development, ecofriendly secondary batteries, hydrogen generating energy devices, energy storage systems, and many other new energy technologies are being developed. Among them, the lithium-ion battery (LIB) is considered to be a next-generation energy device suitable for application as a large-capacity battery and capable of industrial application due to its high energy density and long lifespan. However, considering the growing battery market such as eco-friendly electric vehicles and drones, it is expected that a large amount of battery waste will spill out from some point due to the end of life. In order to prepare for this situation, development of a process for recovering lithium and various valuable metals from waste batteries is required, and at the same time, a plan to recycle them is socially required. In this study, we introduce a nanoscale pattern transfer printing (NTP) process of Li2CO3, a representative anode material for lithium ion batteries, one of the strategic materials for recycling waste batteries. First, Li2CO3 powder was formed by pressing in a vacuum, and a 3-inch sputter target for very pure Li2CO3 thin film deposition was successfully produced through high-temperature sintering. The target was mounted on a sputtering device, and a well-ordered Li2CO3 line pattern with a width of 250 nm was successfully obtained on the Si substrate using the NTP process. In addition, based on the nTP method, the periodic Li2CO3 line patterns were formed on the surfaces of metal, glass, flexible polymer substrates, and even curved goggles. These results are expected to be applied to the thin films of various functional materials used in battery devices in the future, and is also expected to be particularly helpful in improving the performance of lithium-ion battery devices on various substrates.

Electrochemical Performance of CB/SiOx/C Anode Materials by SiOx Contents for Lithium Ion Battery (SiOx 함량에 따른 CB/SiOx/C 음극재의 전기화학적 특성)

  • Kim, Kyung Soo;Kang, Seok Chang;Lee, Jong Dae;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.117-123
    • /
    • 2021
  • In this study, the composite was prepared by mixing SiOx, soft carbon, and carbon black and the electrochemical properties of lithium ion battery were investigated. The content of SiOx added to improve the capacity of the soft carbon anode material was varied to 0, 6, 8, 10, 20 wt%, and carbon black was added as a structural stabilizer for reducing the volume expansion of SiOx. The physical properties of prepared CB/SiOx/C composite were investigated through XRD, SEM, EDS and powder resistance analysis. In addition, the electrochemical properties of prepared composite were observed through the charge/discharge capacity, rate and impedance analysis of the lithium ion battery. The prepared CB/SiOx/C composite had an inner cavity capable of mitigating the volume expansion of SiOx by adding carbon black. The formed internal cavity showed a low initial efficiency when the SiOx content was less than 8 wt%, and low cycle stability when the content of SiOx was less than 20 wt%. The CB/SiOx/C composite containing 10 wt% of SiOx showed an initial discharge capacity of 537 mAh/g, a capacity retention rate of 88%, and a rate of 79 at 2C/0.1C. SiOx was added to improve the capacity of the soft carbon anode material, and carbon black was added as a structural stabilizer to buffer the volume change of SiOx. In order to use the CB/SiOx/C composite as a high-efficiency anode material, the mechanism of the optimal SiOx and the use of carbon black as a structural stabilizer was discussed.

Experimental Study on the Agglomeration Characteristics of Coal and Silica Sand by addition of KOH (KOH 첨가에 의한 석탄 및 유동사의 응집특성에 대한 실험적 연구)

  • Cho, Cheonhyeon;Gil, Eunji;Lee, Uendo;Lee, Yongwoon;Kim, Seongil;Yang, Won;Moon, Jihwan;Ahn, Seokgi;Jung, Sungmook;Jeong, Soohwa
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.46-53
    • /
    • 2022
  • The agglomeration characteristics of coal and silica sand were investigated under various conditions using mixed samples consisting of coal, silica sand, and potassium hydroxide, which is an agglomeration accelerator. The samples were prepared by either physically mixing or using aqueous solutions. The experiments using the physically mixed powder samples were performed with a two hour reaction time. The results showed that the number of aggregates generated increased as the reaction temperature and the total potassium content increased. The experiments using aqueous solutions were performed at 880 ℃, which is the operating temperature of a fluidized bed boiler, and at 980 ℃, which assumes a local hot spot. The amount of agglomeration generated as the reaction time increased and the total potassium content increased was identified. In the experiment performed at 880 ℃, the amount of aggregate generated clearly increased with the reaction time, and in the experiment performed at 980 ℃, assuming a local hot spot, a large amount of aggregate was generated in a relatively short time. The aggregates became harder as the potassium content increased. When the total potassium content was less than 1.37 wt.%, the aggregates were weak at both temperatures and collapsed even with a slight impact. Additionally, the surface characteristics of the silica sand and ash aggregates were observed by SEM-EDS analysis. The analysis revealed a large amount of potassium at the bonding sites. This result indicates that there is a high possibility of aggregation in the form of a eutectic compound when the alkali component is increased.

Study of the Production Techniques Used in the Goryeo-period Gilt-Bronze Case for Acupuncture in the Collection of the Royal Museums of Art and History, Belgium (벨기에 왕립예술역사박물관 소장 고려시대 금동침통의 과학적 보존처리를 통한 제작기법 연구)

  • Lee, Jaesung;Park, Younghwan
    • Conservation Science in Museum
    • /
    • v.27
    • /
    • pp.147-164
    • /
    • 2022
  • Over 200,000 Korean cultural heritage items are currently located abroad. They have made their way to 22 countries under different circumstances and with unique backgrounds. While some of them continue to contribute to promoting Korean culture around the world, others cannot be exhibited due to damage or poor condition. In view of these circumstances, the Overseas Korean Cultural Heritage Foundation (OKCHF) has since 2013 provided museums and art galleries abroad with support for the conservation, restoration, and utilization of the Korean cultural heritage items that they house. As a part of these efforts and on the occasion of the 120th anniversary of the diplomatic relationship between the Republic of Korea and the Kingdom of Belgium in 2021, a gilt-bronze case for acupuncture needles dating to the Goryeo period (918-1392) from the collection of the Royal Museums of Art and History (RMAH), Belgium was brought to Korea for conservation treatment. The primary purpose of this conservation treatment was to restore the original form of the relic and slow to the degree possible the progress of corrosion. The conservation treatment of the gilt-bronze case followed the fundamental order of conservation treatment: removal of corrosive substances, stabilization, and reinforcement. Since this was the first case of restoring metallic cultural properties under the abovementioned support program by the OKCHF, special methodologies distinct from those available in overseas institutions were required. Diverse scientific methods (e.g., X-ray inspection, CT scanning, 3D microscopy) were applied to identify the metalcraft techniques used in the Goryeo period. The analysis found that several designs, including lotus and scrollwork, were exquisitely engraved on the surface of the case by making dots using a round-edged chisel. A bronze plate engraved with designs was rolled into a cylindrical form. The ends were overlapped by 2 to 3 centimeters and then attached to each other by silver soldering. The overlapping ends were welded flat with nearly no gaps. As the final process in the production, the case was lavishly gilt with gold powder using amalgam gilding. The conservation treatment of the gilt-bronze case for acupunctural needles in the RMAH collection restored the original form of the relic and arrested further corrosion. Above all, it revived the historic and academic value of the overseas Korean cultural heritage through scientific analysis.

A study of the tensile bond strength between Polyetherketoneketone (PEKK) and various veneered denture base resin (Polyetherketoneketone (PEKK)과 다양한 의치상용 전장 레진 간의 인장결합강도에 관한 연구)

  • Park, Yeon-Hee;Seo, Jae-Min;Lee, Jung-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.3
    • /
    • pp.231-238
    • /
    • 2022
  • Purpose. This study aimed to investigate the effect of different veneering methods on the tensile bond strength between polyetherketoneketone (PEKK) and denture base resins. Materials and methods. A total of 80 PEKK T-shaped specimens were fabricated and the primer (Visio.link) was applied after airborne-particle abrasion with 110 ㎛ alumina oxide powder. According to the veneering method, the specimens were divided into four groups (n = 20) to be veneered with the gingival colored packable photopolymerized composite resin (SR Adoro); flowable photopolymerized composite resin, (Crea.lign); heat-polymerized resin (Vertex); and self-polymerized resin (ProBase Cold). Each group was divided into two subgroups (n = 10) according to the artificial thermal aging. After the tensile bond strength measurement via universal testing machine, the fracture sections of all specimens were observed. Two-way ANOVA and Tukey's HSD post hoc test were used for the statistical analysis (α = .05). Results. The results of the two-way ANOVA showed statistically significant differences in the tensile bond strength according to the veneering method and artificial thermal aging of denture base resins (P<.001). The highest tensile bond strength showed in the packable photopolymerized resin group before and after the artificial thermal aging. The lowest tensile bond strength showed in the heat-polymerized resin group. The mixed and adhesive fracture showed in all groups. Conclusion. The veneering method and artificial thermal aging can influence in the tensile bond strength between the resin and PEKK. The artificial thermal aging can reduce the tensile bond strength.

New Functional Properties of Passion Fruit Extract on Skin (패션 프룻 추출물이 피부에 미치는 새로운 기능적 효과)

  • Jeong, Mi Suk;Kim, Soon-Rae;Han, Chang Woo;Kim, Hyeon Jin;Jang, Se Bok
    • Journal of Life Science
    • /
    • v.32 no.2
    • /
    • pp.101-107
    • /
    • 2022
  • In this research, the anti-inflammatory, antioxidant, antiaging, and skin whitening properties of pulp and seed extracts of passion fruit were studied. The result of the primary skin irritation test using a skin-attached patch determined the skin irritation index to be 0.00 for the passion fruit extract. In addition, RAW 264.7 macrophages produce NO by stimulation of lipopolysaccharides, and the application of extracts to this resulted in significantly lower NOs, confirming the excellent anti-inflammatory properties of passion fruit extracts. The 2,2-diphenyl-1-picrylhydrazyl test further confirmed that the passion fruit extract exhibits a good 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate radical scavenging ability of 5.11% and strong antioxidant properties. The presence of collagen type I in the skin is a measure of aging and various skin diseases. The results obtained from the analysis of the activity of human procollagen I alpha 1 confirmed that the passion fruit extract reduces the synthesis of procollagen. In addition, the skin whitening property of the passion fruit extract was confirmed by the melanin inhibition test, and a sample was obtained that contained more than 2% of arbutin, a whitening agent approved by the Ministry of Food and Drug Safety, which is generally present in the form of a white powder and is used as a functional ingredient. This confirms that the whitening efficacy of the passion fruit extract obtained from nature contributes to the development of functional raw materials for cosmetics and food.

Physicochemical Properties of Protaetia brevitarsis sinulensis Larvae Reared with Feed Including Noni and Nipa Palm (노니와 해죽순 급이가 흰점박이꽃무지 유충에 미치는 물리화학적 특성)

  • Kim, Sam Woong;Je, Kyeong Min;Kim, Dul Nam;Kim, Tae Wan;Bang, Kyu Ho;Chi, Won-Jae;Bang, Woo Young;Kim, Jang Hyeon;Yang, Chul Woong;Kim, Il-Suk
    • Journal of Life Science
    • /
    • v.32 no.10
    • /
    • pp.784-791
    • /
    • 2022
  • This study observed changes in the body composition of Protaetia brevitarsis sinulensis larvae when reared with feed that included noni and nipa palm. Compared to the control group, the death rate and product yield of the treatment group were improved after the larval fasting process. The brightness of the larval powder of the treatment group increased, but the redness decreased. The crude fat content of the treated group was slightly increased according to the assays of the general components, but the mineral content was significantly increased. The total structural amino acids of the treatment group decreased, but the total free amino acids increased. The structural amino acids generally tended to decrease in the treatment group. However, the free amino acids showed no specific differences. Among the free amino acids, tryptophan, phosphoserine, and methylhistidine were highly increased in the treatment group, whereas threonine, methionine, and asparagine showed the opposite results. Among the polyunsaturated fatty acids, eicosapentaenoic acid (C20:5n3) of omega-3 was increased in the treatment group, but the omega-6 series was decreased. Since minerals, total free amino acids, and omega-3 fatty acids in the treatment group were increased compared to the control group, we suggest that noni and nipa palm can potentially be applied to the production of functionally improved substances as additional sources of feed for Protaetia brevitarsis sinulensis larvae.