• Title/Summary/Keyword: potential model

Search Result 6,763, Processing Time 0.039 seconds

Unleashing the Potential of Vision Transformer for Automated Bone Age Assessment in Hand X-rays (자동 뼈 연령 평가를 위한 비전 트랜스포머와 손 X 선 영상 분석)

  • Kyunghee Jung;Sammy Yap Xiang Bang;Nguyen Duc Toan;Hyunseung Choo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.687-688
    • /
    • 2023
  • Bone age assessment is a crucial task in pediatric radiology for assessing growth and development in children. In this paper, we explore the potential of Vision Transformer, a state-of-the-art deep learning model, for bone age assessment using X-ray images. We generate heatmap outputs using a pre-trained Vision Transformer model on a publicly available dataset of hand X-ray images and show that the model tends to focus on the overall hand and only the bone part of the image, indicating its potential for accurately identifying the regions of interest for bone age assessment without the need for pre-processing to remove background noise. We also suggest two methods for extracting the region of interest from the heatmap output. Our study suggests that Vision Transformer holds great potential for bone age assessment using X-ray images, as it can provide accurate and interpretable output that may assist radiologists in identifying potential abnormalities or areas of interest in the X-ray image.

Adsorption Characteristics of As and Se Ions by HTMAB Modified Anthracite (HTMAB로 표면처리된 안트라사이트에 의한 비소 및 셀렌 이온의 흡착 특성)

  • Kim, Jeung-Bea
    • Journal of Environmental Science International
    • /
    • v.27 no.3
    • /
    • pp.167-177
    • /
    • 2018
  • The removal characteristics of As and Se ions from aqueous solution by hexadecyl trimethyl ammonium bromide (HTMAB) modified anthracite (HTMAB-AT) were investigated under various conditions of contact time, pH and temperature. When the pH is 6, the zeta potential value of anthracite (AT) is -24 mV and on the other hand, the zeta potential value of the HTMAB-AT is +44 mV. It can be seen that the overall increase of about 60 mV. Increasing the (+) potential value indicates that the surface of the adsorbent had a stronger positive charge, so adsorption for the anion metal was increased. The isotherm data was well described by Langmuir and Temkin isotherm model. The maximum adsorption capacity was found to be 7.81 and 6.89 mg/g for As and Se ions from the Langmuir isotherm model at 298 K, respectively. The kinetic data was tested using pseudo first and pseudo second order models. The results indicated that adsorption fitted well with the pseudo second order kinetic model. The mechanism of the adsorption process showed that adsorption was dependent on intra particle diffusion model according to two step diffusion. The thermodynamic parameters(${\Delta}G^{\circ}$, ${\Delta}H^{\circ}$, and ${\Delta}S^{\circ}$) were also determined using the equilibrium constant value obtained at different temperatures. The thermodynamic parameters indicated that the adsorption process was physisorption, and also an endothermic and spontaneous process.

Mineral Potential Mapping of Gagok Mine Using 3D Geological Modeling (3차원 지질모델링을 이용한 가곡광산 광상 포텐셜 지도 작성)

  • Park, Gyesoon;Cho, Seong-Jun;Oh, Hyun-Joo;Lee, Chang-Won
    • Journal of the Korean earth science society
    • /
    • v.35 no.6
    • /
    • pp.412-421
    • /
    • 2014
  • In order to develop an effective mineral exploration technique, this study was carried out about the potential mapping of Gagok mine. The deposit model of Gagok mine is widely known. Based on the deposit model, we constructed mining indicator indices using related igneous rocks, faults, and carbonate rocks. By analyzing the spatial correlation between ore and indicator index structures, we decided the weighting values of indices according to the distance from the index structure. The 3D potential mapping was performed using 3D geological model and geological indices. The analyzed potential map verified that the locations and patterns of high potential regions of the results were well matched with those of the known ore bodies. Using the potential mapping results, we could effectively predict the location of a high potential area that has similar geological settings with ore.

Study for the Grounding Resistance of the Mesh Grounding Electrode by Water Tank Model (수조모델을 이용한 메쉬접지극의 접지저항에 관한 연구)

  • Kim, Ju-Chan;Kim, Sung-Sam;Choi, Jong-Gyu;Lee, Chung-Sik;Koh, Hee-Seog
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.3
    • /
    • pp.28-35
    • /
    • 2006
  • Recently, a number of equipments related with electricity, electronics, and communication in the same building are needed to the grounding system for safety from unexpected accidents. When the faulted electric current flows into a certain grounding system, the potential rise in that system takes place and it might induce the potential rise to other grounding system. This potential interference was strongly affected by the surface potential, which was deeply related with the electrode shape. In this paper, the fundamental formula was deduced on the basis of surface potential of two grounding electrodes. Which corresponds to source of the potential interference and other grounding electrode, respectively. Therefore, the degree of potential interference in this mesh grounding electrode system was verified by the simple model simulation. In addition, in order to identify the difference between the grounding resistance in the realistic construction site and the expected value from the corresponding simulation, the experiment was performed with model on a reduced scale about the realistic grounding system. It consists of stainless steel hemisphere electrodes in a water tank. From this work, the grounding resistance in the mesh grounding electrode showed the good coincidence results between those. Consequently, it is confirmed that the grounding resistance in the mesh electrode is possible to be estimated by performing the experiment using the water tank model.

Development of An On-line Scheduling Framework Based on Control Principles and its Computation Methodology Using Parametric Programming (실시간 일정계획 문제에 대한 Control 기반의 매개변수 프로그래밍을 이용한 해법의 개발)

  • Ryu, Jun-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.12
    • /
    • pp.1215-1219
    • /
    • 2006
  • Scheduling plays an important role in the process management in terms of providing profit-maximizing operation sequence of multiple orders and estimating completion times of them. In order to takes its full potential, varying conditions should be properly reflected in computing the schedule. The adjustment of scheduling decisions has to be made frequently in response to the occurrence of variations. It is often challenging because their model has to be adjusted and their solutions have to be computed within short time period. This paper employs Model Predictive Control(MPC) principles for updating the process condition in the scheduling model. The solutions of the resulting problems considering variations are computed using parametric programming techniques. The key advantage of the proposed framework is that repetition of solving similar programming problems with decreasing dimensionis avoided and all potential schedules are obtained before the execution of the actual processes. Therefore, the proposed framework contributes to constructing a robust decision-support tool in the face of varying environment. An example is solved to illustrate the potential of the proposed framework with remarks on potential wide applications.

A Two-Dimensional (2D) Analytical Model for the Potential Distribution and Threshold Voltage of Short-Channel Ion-Implanted GaAs MESFETs under Dark and Illuminated Conditions

  • Tripathi, Shweta;Jit, S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.1
    • /
    • pp.40-50
    • /
    • 2011
  • A two-dimensional (2D) analytical model for the potential distribution and threshold voltage of short-channel ion-implanted GaAs MESFETs operating in the sub-threshold regime has been presented. A double-integrable Gaussian-like function has been assumed as the doping distribution profile in the vertical direction of the channel. The Schottky gate has been assumed to be semi-transparent through which optical radiation is coupled into the device. The 2D potential distribution in the channel of the short-channel device has been obtained by solving the 2D Poisson's equation by using suitable boundary conditions. The effects of excess carrier generation due to the incident optical radiation in channel region have been included in the Poisson's equation to study the optical effects on the device. The potential function has been utilized to model the threshold voltage of the device under dark and illuminated conditions. The proposed model has been verified by comparing the theoretically predicted results with simulated data obtained by using the commercially available $ATLAS^{TM}$ 2D device simulator.

Analyses of Hazard Voltages According to the Buried Depth of Small-sized Model Grounding Electrode (축소형 모델 접지전극의 매설깊이에 따른 위험전압의 분석)

  • Paek, Young-Hwan;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.4
    • /
    • pp.56-61
    • /
    • 2009
  • This paper presents the ground surface potential profiles and hazard voltages around the metallic structure connected to a small-sized model ground electrode. Because it is very difficult to draw valid conclusions concerning a general grounding problem from actual field data, scale model tests can be used to determine the touch and stop voltages and surface potential profiles around ground electrode. In this work, a hemispherical vessel with a diameter of 1,100[mm] was employed to simulate uniform soil. As a result, the ground surface potential around the ground electrode was significantly raised In particular the ground surface potential at the just upper point of ground rod was higher than other points. When the buried depth of ground rod is increased, the ground surface potential and step voltage were lowered but the touch voltage was elevated.

Deterministic Optimal Simulation of Spatial Growth Form for Urbanized Area Using CA Model and Simplified WSM-AHP Techniques (CA기법과 WSM-AHP 간편법을 이용한 도시확산의 결정론적 최적 모의)

  • Kim, Dae-Sik
    • Journal of Korean Society of Rural Planning
    • /
    • v.14 no.2
    • /
    • pp.55-64
    • /
    • 2008
  • This study aims to analyze the sensitivity of WSM(weighted scenario method)-AHP method according to variation of nonlinear exponent for accessibility criteria, which are used to make urbanization potential maps with the optimal weighting value for multiple criteria in grid-based GIS technique. Besides this study tried to develop WSM-AHP2 which is simplified by using rank of the potential value for each scenario. The two methods were applied to the test area, Suwon city located south area of Seoul, with time series land-use maps of 1986 and 1996. The evaluation system of urbanization potential have 7 criteria including 6 accessibility criteria. The results of WSM-AHP2, the optimal weighting values and their corresponding potential maps, have almost similar with those of WSM-AHP. In the application of CA(cellular automata) model for expansion of urbanized area using the three potential maps by WSM-AHP, WSM-AHP2, and specialists's AHP evaluation, it also showed that the accuracy of simulation for actual urban area is the highest in the potential map of WSM-AHP, followed by WSM-AHP2 and specialists's AHP evaluation. From the results of this study, WSM-AHP and simplified WSM-AHP2 will be used to generate the optimal potential maps for land-use planning in urban fringe area.

EFFECT OF THE WATER-WALL INTERACTION POTENTIALS ON THE PROPERTIES OF AQUEOUS SOLUTIONS CONFINED WITHIN A UNIFORMLY CHARGED NANO-CHANNEL

  • Hoang, H.;Kang, S.;Suh, Y.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.368-376
    • /
    • 2009
  • Studies on the effect of the wall-ion, wall-water, water-ion and ion-ion interaction on properties of water and ions in nano-channels have been performed through the use of different kinds of ions or different models of potential energy between wall-ion or wall-water. On this paper, we address the effect of water-wall interaction potential on the properties of confined aqueous solution by using the molecular dynamics (MD) simulations. As the interaction potential energies between water and wall we employed the models of the Weeks-Chandler-Andersen (WCA) and Lennard-Jones (LJ). On the MD simulations, 680 water molecules and 20 ions are included between uniformly charged plates that are separated by 2.6 nm. The water molecules are modeled by using the rigid SPC/E model (simple point charge/Extended) and the ions by the charged Lennard-Jones particle model. We compared the results obtained by using WCA potential with those by LJ potential. We also compared the results (e.g. ion density and electro-static potential distributions) in each of the above cases with those provided by solving the Poisson-Boltzmann equation.

  • PDF

INTERPARTICLE POTENTIAL OF 10 NANOMETER TITANIUM NANOPARTICLES IN LIQUID SODIUM: THEORETICAL APPROACH

  • KIM, SOO JAE;PARK, GUNYEOP;PARK, HYUN SUN;KIM, MOO HWAN;BAEK, JEHYUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.662-668
    • /
    • 2015
  • A suspension of titanium nanoparticles (Ti NPs) in liquid sodium (Na) has been proposed as a method to mitigate the violent sodium-water reaction (SWR). The interparticle potential between Ti NPs in liquid Na may play a significant role in the agglomeration of NPs on the reaction surface and in the bulk liquid Na, since the potential contributes to a reduction in the long-term dispersion stability. For the effective control of the SWR with NPs, a physical understanding of the molecular dynamics of NPs in liquid Na is key. Therefore in this study, the nonretarded Van der Waals model and the solvation potential model are employed to analyze the interparticle potential. The ab initio calculation reveals that a strong repulsive force driven by the solvation potential exceeds the interparticle attraction and predicts the agglomeration energy required for two 10-nm Ti NPs to be $4{\times}10^{-17}J$. The collision theory suggests that Ti NPs can be effective suppressors of the SWR due to the high energy barrier that prevents significant agglomeration of Ti NPs in quiescent liquid Na.