• Title/Summary/Keyword: potential impact on drought

Search Result 21, Processing Time 0.031 seconds

Assessment of the Potential Impact of Climate Change on the Drought in Agricultural Reservoirs under SSP Scenarios (SSP 시나리오를 고려한 농업용 저수지의 이수측면 잠재영향평가)

  • Kim, Siho;Jang, Min-Won;Hwang, Syewoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.2
    • /
    • pp.35-52
    • /
    • 2024
  • This study conducted an assessment of potential impacts on the drought in agricultural reservoirs using the recently proposed SSP (Shared Socioeconomic Pathways) scenarios by IPCC (Intergovernmental Panel on Climate Change). This study assesses the potential impact of climate change on agricultural water resources and infrastructure vulnerability within Gyeongsangnam-do, focusing on 15 agricultural reservoirs. The assessment was based on the KRC (Korea Rural Community Corporation) 1st vulnerability assessment methodology using RCP scenarios for 2021. However, there are limitations due to the necessity for climate impact assessments based on the latest climate information and the uncertainties associated with using a single scenario from national standard scenarios. Therefore, we applied the 13 GCM (General Circulation Model) outputs based on the newly introduced SSP scenarios. Furthermore, due to difficulties in data acquisiton, we reassessed potential impacts by redistributing weights for proxy variables. As a main result, with lower future potential impacts observed in areas with higher precipitation along the southern coast. Overall, the potential impacts increased for all reservoirs as we moved into the future, maintaining their relative rankings, yet showing no significant variability in the far future. Although the overall pattern of potential impacts aligns with previous evaluations, reevaluation under similar conditions with different spatial resolutions emphasizes the critical role of meteorological data spatial resolution in assessments. The results of this study are expected to improve the credibility and accuracy formulation of vulnerability employing more scientific predictions.

Global Assessment of Climate Change-Associated Drought Risk

  • Kim, Heey Jin;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.397-397
    • /
    • 2019
  • With the consequences of climate change becoming more evident, research on climate-associated risks has become a basis for climate adaptation and mitigation. Amongst the different sectors and natural resources considered in assessing such risks, drought is one impact to our environment that experiences stress from climate change but is often overlooked and has the potential to bring severe consequences when drought occurs. For example, when temperatures are higher, water demand increases and water supply decreases; when precipitation patterns fluctuate immensely, floods and droughts occur more frequently at greater magnitudes, putting stress on ecosystems. Hence, it is important for us to evaluate drought risk to observe how different climate change and socioeconomic scenarios can affect this vital life resource. In this study, we review the context of drought risk on the basis of climate change impacts and socioeconomic indicators. As underlined in the IPCC AR5 report, the risks are identified by understanding the vulnerability, exposure, and hazards of drought. This study analyzed drought risk on a global scale with different RCP scenarios projected until the year 2099 with a focus on the variables population, precipitation, water resources, and temperature.

  • PDF

Assessing the Potential Impact of Climate Change on Irrigation by Reservoir (농업용 저수지의 농업가뭄에 대한 기후변화 잠재영향 평가)

  • Kim, Soo-Jin;Hwang, Syewoon;Bae, Seung-Jong;Yoo, Seunghwan;Choi, Jin-Yong;Jang, Min-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.141-150
    • /
    • 2021
  • In order to assess the impact of climate change on irrigation reservoirs, climate exposure (EI), sensitivity (SI), and potential impact (PI) were evaluated for 1,651 reservoirs nationwide. Climate exposure and sensitivity by each reservoir were calculated using data collected from 2011 to 2020 for seven proxy variables (e.g. annual rainfall) and six proxy variables (e.g. irrigation days), respectively. The potential impact was calculated as the weighted sum of climate exposure and sensitivity, and was classified into four levels: 'Low (PI<0.4)', 'Medium (PI<0.6)', 'High (PI<0.8)', and 'Critical (PI≥0.8)'. The result showed that both the climate exposure index and the sensitivity index were on average high in Daegu and Gyeongbuk with high temperature and low rainfall. About 79.8% of irrigation reservoirs in Daegu, Gyeongbuk, and Ulsan with high climate exposure and sensitivity resulted in a 'High' level of potential impact. On the contrary, 64.5% of the study reservoirs in Gyeongnam and Gangwon showed 'Low' in potential impact. In further studies, it is required to reorganize the proxy variables and the weights in accordance with practical alternatives for improving adaptive capacity to drought, and it is expected to contribute to establishing a framework for vulnerability assessment of an irrigation reservoir.

Estimating Climate Change Impact on Drought Occurrence Based on the Soil Moisture PDF (토양수분 확률밀도함수로 살펴본 가뭄발생에 대한 기후변화의 영향)

  • Choi, Dae-Gyu;Ahn, Jae-Hyun;Jo, Deok-Jun;Kim, Sang-Dan
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.8
    • /
    • pp.709-720
    • /
    • 2010
  • This paper describes the modeling of climate change impact on drought using a conceptual soil moisture model and presents the results of the modeling approach. The future climate series is obtained by scaling the historical series, informed by CCCma CGCM3-T63 with A2 green house emission scenario, using a daily scaling method that considers changes in the future monthly precipitation and potential evapotranspiration as well as in the daily precipitation distribution. The majority of the modeling results indicate that there will be more frequent drought in Korea in the future.

Evaluating the impacts of extreme agricultural droughts under climate change in Hung-up watershed, South Korea

  • Sadiqi, Sayed Shajahan;Hong, Eun-Mi;Nam, Wan-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.143-143
    • /
    • 2021
  • Climate change indicators, mainly frequent drought which has happened since the drought of 1994, 1995, and 2012 causing the devastating effect to the agricultural sector, and could be more disruptive given the context of climate change indicators by increasing the temperature and more variable and extreme precipitation. Changes in frequency, duration, and severity of droughts will have enormous impacts on agriculture production and water management. Since both the possibility of drought manifestation and substantial yield losses, we are propositioning an integrated method for evaluating past and future agriculture drought hazards that depend on models' simulations in the Hung-up watershed. to discuss the question of how climate change might influence the impact of extreme agriculture drought by assessing the potential changes in temporal trends of agriculture drought. we will calculate the temporal trends of future drought through drought indices Standardized Precipitation Evapotranspiration Index, Standardized Precipitation Index, and Palmer drought severity index by using observed data of (1991-2020) from Wonju meteorological station and projected climate change scenarios (2021-2100) of the Representative Concentration Pathways models (RCPs). expected results confirmed the frequency of extreme agricultural drought in the future projected to increase under all studied RCPs. at present 100 years drought is anticipated to happen since the result showing under RCP2.6 will occur every 24 years, RCP4.5 every 17 years, and RCPs8.5 every 7 years, and it would be double in the largest warming scenarios. On another side, the result shows unsupportable water management, could cause devastating consequences in both food production and water supply in extreme events. Because significant increases in the drought magnitude and severity like to be initiate at different time scales for each drought indicator. Based on the expected result that the evaluating the impacts of extreme agricultural droughts and recession could be used for the development of proactive drought risk management, policies for future water balance, prioritize sustainable strengthening and mitigation strategies.

  • PDF

Assessment of Drought Severity on Cropland in Korea Peninsula using Normalized Precipitation Evapotranspiration Index (NPEI) (정규화강수증발산지수(NPEI)를 활용한 한반도 농경지의 가뭄심도 평가)

  • Lim, Chul-Hee;Kim, Damin;Shin, Yuseung;Lee, Woo-Kyun
    • Journal of Climate Change Research
    • /
    • v.6 no.3
    • /
    • pp.223-231
    • /
    • 2015
  • Although a considerable part of climate change can be explained by temperature change, hydrological change such as precipitation, evapotranspiration, and runoff impact more on society. For the ascertain a hydrological change in agriculture sector, this study estimate evapotranspiration of cropland in the Korean peninsula, and then to assess the drought severity in the past 30 years through the estimated potential evapotranspiration and observed precipitation. The potential evapotranspiration is estimated by EPIC model and Penman-Monteith method and the drought severity in cropland of the Korean peninsula is assessed using Normalized Precipitation Evapotranspiration Index (NPEI) based on the difference in precipitation and potential evapotranspiration. In North Korea, the estimated evapotranspiration tends to increase even though a significant change is not found due to the change of climate. Although a time series change in drought severity in the past 30 years is not pronounced, a deviation by year and difference between South and North Korea is certain. One reason of this is difference in precipitation and evapotranspiration change according to the latitude. The result including expansion of facilities for water management in North Korea can be used for agricultural decision making, as well as base data of climate change adaptation.

Percentile Approach of Drought Severity Classification in Evaporative Stress Index for South Korea (Evaporative Stress Index (ESI)의 국내 가뭄 심도 분류 기준 제시)

  • Lee, Hee-Jin;Nam, Won-Ho;Yoon, Dong-Hyun;Hong, Eun-Mi;Kim, Taegon;Park, Jong-Hwan;Kim, Dae-Eui
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.2
    • /
    • pp.63-73
    • /
    • 2020
  • Drought is considered as a devastating hazard that causes serious agricultural, ecological and socio-economic impacts worldwide. Fundamentally, the drought can be defined as temporarily different levels of inadequate precipitation, soil moisture, and water supply relative to the long-term average conditions. From no unified definition of droughts, droughts have been divided into different severity level, i.e., moderate drought, severe drought, extreme drought and exceptional drought. The drought severity classification defined the ranges for each indicator for each dryness level. Because the ranges of the various indicators often don't coincide, the final drought category tends to be based on what the majority of the indicators show and on local observations. Evaporative Stress Index (ESI), a satellite-based drought index using the ratio of potential and actual evaporation, is being used as a index of the droughts occurring rapidly in a short period of time from studies showing a more sensitive and fast response to drought compared to Standardized Precipitation Index (SPI), and Palmer Drought Severity Index (PDSI). However, ESI is difficult to provide an objective drought assessment because it does not have clear drought severity classification criteria. In this study, U.S. Drought Monitor (USDM), the standard for drought determination used in the United States, was applied to ESI, and the Percentile method was used to classify drought categories by severity. Regarding the actual 2017 drought event in South Korea, we compare the spatial distribution of drought area and understand the USDM-based ESI by comparing the results of Standardized Groundwater level Index (SGI) and drought impact information. These results demonstrated that the USDM-based ESI could be an effective tool to provide objective drought conditions to inform management decisions for drought policy.

The Relationship Between Green Stem Disorder and the Accumulation of Vegetative Storage Protein in Soybean

  • Zhang, Jiuning;Katsube-Tanaka, Tomoyuki;Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2019.09a
    • /
    • pp.22-22
    • /
    • 2019
  • Green stem disorder (GSD) of soybean (Glycine max (L.) Merr.) is characterized by delayed senescence of stems with normal pod ripening and seed maturation (Hobbs, 2006). GSD complicates harvesting of soybeans by significantly increasing the difficulty in cutting the affected plants. There is also the potential for moisture in the stems to be scattered on the seed, reducing the grade and storability of the seed. Not only the cause of GSD is yet unknown, but also GSD cannot be evaluated until maturity, therefore the method to evaluate GSD in early growth stage with high sensitivity is necessary. In previous studies, it has been reported that vegetative storage protein (VSP) accumulates and the syndrome of GSD appears in soybean after depod treatment (Fischer, 1999). Soybean VSP is a storage protein which is abundant in young sink leaves and degraded during seed fill (Wittenbach, 1982). Hence, we have established a system to quantify VSP of high sensitivity by using standard protein made by genetically transformed E. coli and specific antibody against VSP, and studied the relationship between VSP and GSD, by depod experiment and drought/excess wet experiments. The result of depod experiment with the cultivar 'Yukihomare' was the same with the previous studies, VSP accumulated much more than control and the syndrome of GSD appeared in soybean in depod treatment. Drought and excess wet had different impact on GSD. Excess wet caused GSD of the cultivar 'Tachinagaha (GSD susceptible)', while drought caused a little syndrome of GSD in the cultivar 'Touhoku 129 (GSD resistant)'. The accumulation of VSP differed between the two cultivars over time. In conclusion, the accumulation of VSP came along with the emergence of GSD. Different cultivars showed different response to drought and excess wet. In the future, it is expected that the dynamics of VSP will be elucidated in detail, leading to the development of early diagnosis technology for green stem disorder and the elucidation of mechanism of soybean GSD.

  • PDF

Health Impacts of Climate Change and Natural Disaster (기후변화와 자연재난의 건강영향)

  • Kim, Daeseon;Lee, Chulwoo;Vatukela, Jese
    • Journal of Appropriate Technology
    • /
    • v.5 no.2
    • /
    • pp.118-125
    • /
    • 2019
  • Climate change is one part of 17 Sustainable Development Goals (SDGs). According to the Fifth Assessment Report by the Inter- governmental Panel on Climate Change(IPCC) published in 2014, global warming is caused by greenhouse gas (GHG) emissions. The most important GHG is carbon dioxide (CO2), which is released by the burning of fossil fuels and, to a lesser extent, by land use practices, followed by nitrous oxide and methane. IPCC predicts that global temperatures will rise 3.7℃ and sea level will rise 0.63 m by 2099 in the case of no strong restraint. According to the report, we can expect a massive species extinctions, changes in storm and drought cycles, altered ocean circulation, and redistribution of vegetation by global warming. However, climate changes, especially global warming, are the largest potential threat to human health and the source of a number of diseases globally. If climate changes are continued uncontrolled, human health will be adversely affected by the accelerating climate change and the natural disaster induced by climate change. It means we will face more serious conditions of injury, disease, and death related to natural disasters such as flood, drought, heat waves, malnutrition, more allergy, air pollution and climate change related infections related to morbidity and mortality. This review emphasizes on the relationship between global climate changes and human health and provides some suggestions for improvement.

Assessing the resilience of urban water management to climate change

  • James A. Griffiths
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.32-32
    • /
    • 2023
  • Incidences of urban flood and extreme heat waves (due to the urban heat island effect) are expected to increase in New Zealand under future climate change (IPCC 2022; MfE 2020). Increasingly, the mitigation of such events will depend on the resilience of a range Nature-Based Solutions (NBS) used in Sustainable Urban Drainage Schemes (SUDS), or Water Sensitive Urban Design (WSUD) (Jamei and Tapper 2019; Johnson et al 2021). Understanding the impact of changing precipitation and temperature regimes due climate change is therefore critical to the long-term resilience of such urban infrastructure and design. Cuthbert et al (2022) have assessed the trade-offs between the water retention and cooling benefits of different urban greening methods (such as WSUD) relative to global location and climate. Using the Budyko water-energy balance framework (Budyko 1974), they demonstrated that the potential for water infiltration and storage (thus flood mitigation) was greater where potential evaporation is high relative to precipitation. Similarly, they found that the potential for mitigation of drought conditions was greater in cooler environments. Subsequently, Jaramillo et al. (2022) have illustrated the locations worldwide that will deviate from their current Budyko curve characteristic under climate change scenarios, as the relationship between actual evapotranspiration (AET) and potential evapotranspiration (PET) changes relative to precipitation. Using the above approach we assess the impact of future climate change on the urban water-energy balance in three contrasting New Zealand cities (Auckland, Wellington, Christchurch and Invercargill). The variation in Budyko curve characteristics is then used to describe expected changes in water storage and cooling potential in each urban area as a result of climate change. The implications of the results are then considered with respect to existing WSUD guidelines according to both the current and future climate in each location. It was concluded that calculation of Budyko curve deviation due to climate change could be calculated for any location and land-use type combination in New Zealand and could therefore be used to advance the general understanding of climate change impacts. Moreover, the approach could be used to better define the concept of urban infrastructure resilience and contribute to a better understanding of Budyko curve dynamics under climate change (questions raised by Berghuijs et al 2020)). Whilst this knowledge will assist in implementation of national climate change adaptation (MfE, 2022; UNEP, 2022) and improve climate resilience in urban areas in New Zealand, the approach could be repeated for any global location for which present and future mean precipitation and temperature conditions are known.

  • PDF