• Title/Summary/Keyword: potential failure modes

Search Result 74, Processing Time 0.021 seconds

Application Study on FMEA(Failure Mode and Effect Analysis) for Waterjet-lifter of Deep-Sea Manganese Nodule Miner (심해저 망간단괴 집광시스템의 물제트부양장치에 대한 FMEA 적용 연구)

  • Choi, Jong-Su;Hong, Sup;Lee, Tae-Hee;Kim, Hyung-Woo;Yeu, Tae-Kyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.32-38
    • /
    • 2009
  • An FMEA for the waterjet-lifter of a DSNM is performed to prevent the occurrence of device failure. A waterjet-lifter raises and transports manganese nodules from the deep-sea floor up to a somewhat elevated place, from which a pin-scraper transports the lifted nodules to the inner space of the DSNM. A concept design for a device using the axiomatic design methodology is shown as the mapping between the functional domain and physical domain. The FMEA for a DSNM is introduced briefly and the rating criteria of severity, occurrence, and detection for the DSNM are defined. The FMEA of the functional requirements of a DSNM device is accomplished. Three kinds of failure modes, as well as their effects and causes, are predicted. Current design control methods for detecting potential failures, such as physical or computational experiments, design confirmation, and mathematical calculation, are described and the recommended actions for several significant causes are suggested.

New Machine Condition Diagnosis Method Not Requiring Fault Data Using Continuous Hidden Markov Model (결함 데이터를 필요로 하지 않는 연속 은닉 마르코프 모델을 이용한 새로운 기계상태 진단 기법)

  • Lee, Jong-Min;Hwang, Yo-Ha
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.2
    • /
    • pp.146-153
    • /
    • 2011
  • Model based machine condition diagnosis methods are generally using a normal and many failure models which need sufficient data to train the models. However, data, especially for failure modes of interest, is very hard to get in real applications. So their industrial applications are either severely limited or impossible when the failure models cannot be trained. In this paper, continuous hidden Markov model(CHMM) with only a normal model has been suggested as a very promising machine condition diagnosis method which can be easily used for industrial applications. Generally hidden Markov model also uses many pattern models to recognize specific patterns and the recognition results of CHMM show the likelihood trend of models. By observing this likelihood trend of a normal model, it is possible to detect failures. This method has been successively applied to arc weld defect diagnosis. The result shows CHMM's big potential as a machine condition monitoring method.

Evaluation Model of Service Reliability Using a Service Blueprint and FTA (서비스 블루프린트와 FTA를 이용한 서비스 신뢰도 평가모델)

  • Yoo, Jung-Sang;Oh, Hyung-Sool
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.4
    • /
    • pp.194-201
    • /
    • 2012
  • Because the difference between products and services are getting less and less, service and manufacturing companies' efforts are increasingly focused on utilizing services to satisfy customers' needs under today's competitive market environment. The value of services depends on service reliability that is identified by satisfaction derived from the relationship between customer needs and service providers. In this paper, we extend concepts from the fault tree analysis for reliability analysis of tangible systems to services. We use an event-based process model to facilitate service design and represent the relationships between functions and failures in a service. The objective of this research is to propose a method for evaluating service reliability based on service processes using service blueprint and FTA. We can identify the failure mode of service in a service delivery process with a service blueprint. The fuzzy membership function is used to characterize the probability of failure based on linguistic terms. FTA is employed to estimate the reliability of service delivery processes with risk factors that are represented as potential failure causes. To demonstrate implementation of the proposed method, we use a case study involving a typical automotive service operation.

Expert System for FMECA Using Minimal Cut Set and Fuzzy Theory (최소절단집합과 퍼지이론을 이용한 FMECA 전문가 시스템)

  • Kim, Dong-Jin;Kim, Jin-O;Kim, Hyung-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.3
    • /
    • pp.342-347
    • /
    • 2009
  • Failure Mode Effects and Criticality Analysis (FMECA) is one of most widely used methods in modern engineering system to investigate potential failure modes and its severity upon the system. While performing FMECA, the experts evaluates criticality and severity of each failure mode and visualize the risk level matrix putting those indices to column and row variable respectably. Which results uncertainty in the result. In order to handle the uncertainty and conclude risk level matrix, this paper proposes a new FMECA procedure using minimal cut set (MCS) and fuzzy theory. Severity is calculated by proposed structural importance while criticality is determined by typical equipment failure rate data from IEEE Std 493. Finally, the risk level is compounded of these indices.

Element loss analysis of concentrically braced frames considering structural performance criteria

  • Rezvani, Farshad Hashemi;Asgarian, Behrouz
    • Steel and Composite Structures
    • /
    • v.12 no.3
    • /
    • pp.231-248
    • /
    • 2012
  • This research aims to investigate the structural behavior of concentrically braced frames after element loss by performing nonlinear static and dynamic analyses such as Time History Analysis (THA), Pushdown Analysis (PDA), Vertical Incremental Dynamic Analyses (VIDA) and Performance-Based Analysis (PBA). Such analyses are to assess the potential and capacity of this structural system for occurrence of progressive collapse. Besides, by determining the Failure Overload Factors (FOFs) and associated failure modes, it is possible to relate the results of various types of analysis in order to save the analysis time and effort. Analysis results showed that while VIDA and PBA according to FEMA 356 are mostly similar in detecting failure mode and FOFs, the Pushdown Overload Factors (PDOFs) differ from others at most to the rate of 23%. Furthermore, by sensitivity analysis it was observed that among the investigated structures, the eight-story frame had the most FOF. Finally, in this research the trend of FOF and the FOF to critical member capacity ratio for the plane split-X braced frames were introduced as a function of the number of frame stories.

Investigation of design methods in calculating the load-carrying capacity of mortise-tenon joint of timber structure

  • Hafshah Salamah;Seung Heon Lee;Thomas H.-K. Kang
    • Earthquakes and Structures
    • /
    • v.25 no.5
    • /
    • pp.307-323
    • /
    • 2023
  • This study compares two prominent design provisions, National Design Specification (NDS) and Eurocode 5, on load-carrying capacity calculations and failure analysis for mortise-tenon joints. Design procedures of double-shear connection from both provisions were used to calculate load-carrying capacity of mortise-tenon joints with eight different bolt sizes. From this calculation, the result was validated using finite element analysis and failure criteria models. Although both provisions share similar failure modes, their distinct calculation methods significantly influence the design load-carrying capacity values. Notably, Eurocode 5 predicts a 6% higher design load-carrying capacity for mortise-tenon joints with varying bolt diameters under horizontal loads and 14% higher under vertical loads compared to NDS. However, the results from failure criteria models indicate that NDS closely aligns with the actual load-carrying capacity. This indicates that Eurocode 5 presents a less conservative design and potentially requires fewer fasteners in the final timber connection design. This evaluation initiates the potential for the development of a wider range of timber connections, including mortise-tenon joints with wooden pegs.

F. E.-assisted design of the eaves bracket of a cold-formed steel portal frame

  • Lim, J.B.P.;Nethercot, D.A.
    • Steel and Composite Structures
    • /
    • v.2 no.6
    • /
    • pp.411-428
    • /
    • 2002
  • Non-linear large-displacement elasto-plastic finite element analyses are used to propose design recommendations for the eaves bracket of a cold-formed steel portal frame. Owing to the thinness of the sheet steel used for the brackets, such a structural design problem is not trivial as the brackets need to be designed against failure through buckling; without availability of the finite element method, expensive laboratory testing would therefore be required. In this paper, the finite element method is firstly used to predict the plastic moment capacity of the eaves bracket. Parametric studies are then used to propose design recommendations for the eaves bracket against two potential buckling modes of failure: (1) buckling of the stiffened free-edge into one-half sine wave, (2) local plate buckling of the exposed triangular bracket area.The results of full-scale laboratory tests on selected geometries of eaves bracket demonstrate that the proposed design recommendations are conservative. The use of the finite element method in this way exploits modern computational techniques for an otherwise difficult structural design problem.

Bolted connectors with mechanical coupler embedded in concrete: Shear resistance under static load

  • Milicevic, Ivan;Milosavljevic, Branko;Pavlovic, Marko;Spremic, Milan
    • Steel and Composite Structures
    • /
    • v.36 no.3
    • /
    • pp.321-337
    • /
    • 2020
  • Contemporary design and construction of steel-concrete composite structures employs the use of prefabricated concrete elements and demountable shear connectors in order to reduce the construction time and costs and enable dismantling of elements for their potential reuse at the end of life of buildings. Bolted shear connector with mechanical coupler is presented in this paper. The connector is assembled from mechanical coupler and rebar anchor, embedded in concrete, and steel bolt, used for connecting steel to concrete members. The behaviour and ultimate resistance of bolted connector with mechanical coupler in wide and narrow members were analysed based on push-out tests and FE analyses conducted in Abaqus software, with focus on concrete edge breakout and bolt shear failure modes. The effect of concrete strength, concrete edge distance and diameter and strength of bolts on failure modes and shear resistance was analysed. It was demonstrated that premature failure by breakout of concrete edge occurs when connectors are located 100 mm or closer from the edge in low-strength and normal-strength reinforced concrete. Furthermore, the paper presents a relatively simple model for hand calculation of concrete edge breakout resistance when bolted connectors with mechanical coupler are used. The model is based on the modification of prediction model used for cast-in and post-installed anchors loaded parallel to the edge, by implementing equivalent influence length of connector with variable diameter. Good agreement with test and FE results was obtained, thus confirming the validity of the proposed method.

Damage Assessment of Buried Pipelines Due to Tunnelling (터널 굴착에 의한 지중 매설관의 손상평가)

  • 유충식;윤효석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.471-478
    • /
    • 2000
  • Ground movements are inevitably caused by tunnel construction in soft ground. In the design and construction of tunnels in urban areas, the potential effects of buried pipelines by ground movements are one of the important design cosiderations. Generally, the most common modes of failure of buried pipelines due to ground movements are tensile fracture of main pipelines, rotation angle and pull-out displacement at joints. In the parametric study, a wide range of conditions were considered, including tunnel diameter(D), tunnel depth(Z$\sub$0/), volume loss(V$\sub$ι/) and inflection point(i). Based on this results, design charts, which are applicable to assess potential damage of buried pipelines associated ground movements due to tunnelling, are developed.

  • PDF

Study on slope stability of waste dump with a weak layer using finite element limit analysis method

  • Chong Chen;Huayong Lv;Jianjian Zhao;Zhanbo Cheng;Huaiyuan Wang;Gao Xu
    • Structural Engineering and Mechanics
    • /
    • v.89 no.3
    • /
    • pp.253-263
    • /
    • 2024
  • Slope stability is generally paid more attention to in slope protection works, especially for slope containing weak layers. Two indexes of safety factor and failure model are selected to perform slope stability. Moreover, the finite element limit analysis method comprehensively combines the advantage of the limit analysis method and the finite element method obtaining the upper and lower bounds of the safety factor and the failure mode under the slope stability limit state. In this study, taking a waste dump containing a weak layer as an engineering background, the finite element limit analysis method is adopted to explore the potential failure mode. Meanwhile, the sensitivity analysis of slope stability is performed on geometrical and geotechnical parameters of the waste dump. The results show that the failure mode of the waste dump slope is two wedges if the weak layer is located on the ground surface (Model A), while the slope can be observed as three wedges failure if the weak layer is below the ground surface (Model B). In addition, both failure modes are highly sensitive to the friction angle of the weak layer and the shear strength of waste disposal, and moderately sensitive to the heap height, the dip angle and cohesion of the weak layer, while the toe cutting has limited effect on the slope stability. Moreover, the sensitivity to the excavation of the ground depends on the location of the weak layer and failure mode.