• Title/Summary/Keyword: potential error

Search Result 711, Processing Time 0.026 seconds

A Unified Analytical One-Dimensional Surface Potential Model for Partially Depleted (PD) and Fully Depleted (FD) SOI MOSFETs

  • Pandey, Rahul;Dutta, Aloke K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.262-271
    • /
    • 2011
  • In this work, we present a unified analytical surface potential model, valid for both PD and FD SOI MOSFETs. Our model is based on a simplified one dimensional and purely analytical approach, and builds upon an existing model, proposed by Yu et al. [4], which is one of the most recent compact analytical surface potential models for SOI MOSFETs available in the literature, to improve its accuracy and remove its inconsistencies, thereby adding to its robustness. The model given by Yu et al. [4] fails entirely in modeling the variation of the front surface potential with respect to the changes in the substrate voltage, which has been corrected in our modified model. Also, [4] produces self-inconsistent results due to misinterpretation of the operating mode of an SOI device. The source of this error has been traced in our work and a criterion has been postulated so as to avoid any such error in future. Additionally, a completely new expression relating the front and back surface potentials of an FD SOI film has been proposed in our model, which unlike other models in the literature, takes into account for the first time in analytical one dimensional modeling of SOI MOSFETs, the contribution of the increasing inversion charge concentration in the silicon film, with increasing gate voltage, in the strong inversion region. With this refinement, the maximum percent error of our model in the prediction of the back surface potential of the SOI film amounts to only 3.8% as compared to an error of about 10% produced by the model of Yu et al. [4], both with respect to MEDICI simulation results.

Numerical Evaluation of 2nd Derivatives of the Potential in the Panel method for the Unsteady Potential Flow Problem (비정상 포텐셜 유동의 패널법 해석에서 포텐셜의 2차 미분값의 수치계산)

  • 양진호;전호환
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.3
    • /
    • pp.41-45
    • /
    • 2000
  • In solving the unsteady potential flow problem of the ship in waves with the panel method, in general one can consider the basic flow as the free stream or double body solution. For the double body solution, the body boundary condition has the 2nd derivatives of the velocity potential. Low order panel methods are known to suffer from the significant error in the 2nd derivatives computed at the body surface. This paper analyzes the numerical error in the 2nd derivatives for a 2-D cylinder and a 3-D sphere problem, and an extrapolation method to obtain the correct derivatives on the body surface is suggested.

  • PDF

Applicability Analysis of FAO56 Penman-Monteith Methodology for Estimating Potential Evapotranspiration in Andong Dam Watershed Using Limited Meteorological Data (제한적인 기상자료 조건에서의 잠재증발산량 추정을 위한 FAO56 Penman-Monteith 방법의 적용성 분석 - 안동댐 유역을 사례로 -)

  • Kim, Sea Jin;Kim, Moon-il;Lim, Chul-Hee;Lee, Woo-Kyun;Kim, Baek-Jo
    • Journal of Climate Change Research
    • /
    • v.8 no.2
    • /
    • pp.125-143
    • /
    • 2017
  • This study is conducted to estimate potential evapotranspiration of 10 weather observing systems in Andong Dam watershed with FAO56 Penman-Monteith (FAO56 PM) methodology using the meteorological data from 2013 to 2014. Also, assuming that there is no solar radiation data, humidity data or wind speed data, the potential evapotranspiration was estimated by FAO56 PM and the results were evaluated to discuss whether the methodology is applicable when meteorological dataset is not available. Then, the potential evapotranspiration was estimated with Hargreaves method and compared with the potential evapotranspiration estimated by FAO56 PM only with the temperature dataset. As to compare the potential evapotranspiration estimated from the complete meteorological dataset and that estimated from limited dataset, statistical analysis was performed using the Root Mean Square Error (RMSE), the Mean Bias Error (MBE), the Mean Absolute Error (MAE) and the coefficient of determination ($R^2$). Also the Inverse Distance Weighted (IDW) method was performed to conduct spatial analysis. From the result, even when the meteorological data is limited, FAO56 PM showed relatively high accuracy in calculating potential evapotranspiration by estimating the meteorological data.

Extension of the adaptive boundary element scheme for the problem with mixed boundary conditions

  • Kamiya, N.;Aikawa, Y.;Kawaguchi, K.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.2
    • /
    • pp.191-202
    • /
    • 1996
  • This paper presents a construction of adaptive boundary element for the problem with mixed boundary conditions such as heat transfer between heated body surface and surrounding medium. The scheme is based on the sample point error analysis and on the extended error indicator, proposed earlier by the authors for the potential and elastostatic problems, and extended successfully to multidomain and thermoelastic analyses. Since the field variable is connected with its derivative on the boundary, their errors are also interconnected by the specified condition. The extended error indicator on each boundary element is modified to meet with the situation. Two numerical examples are shown to indicate the differences due to the prescribed boundary conditions.

Step-size Normalization of Information Theoretic Learning Methods based on Random Symbols (랜덤 심볼에 기반한 정보이론적 학습법의 스텝 사이즈 정규화)

  • Kim, Namyong
    • Journal of Internet Computing and Services
    • /
    • v.21 no.2
    • /
    • pp.49-55
    • /
    • 2020
  • Information theoretic learning (ITL) methods based on random symbols (RS) use a set of random symbols generated according to a target distribution and are designed nonparametrically to minimize the cost function of the Euclidian distance between the target distribution and the input distribution. One drawback of the learning method is that it can not utilize the input power statistics by employing a constant stepsize for updating the algorithm. In this paper, it is revealed that firstly, information potential input (IPI) plays a role of input in the cost function-derivative related with information potential output (IPO) and secondly, input itself does in the derivative related with information potential error (IPE). Based on these observations, it is proposed to normalize the step-size with the statistically varying power of the two different inputs, IPI and input itself. The proposed algorithm in an communication environment of impulsive noise and multipath fading shows that the performance of mean squared error (MSE) is lower by 4dB, and convergence speed is 2 times faster than the conventional methods without step-size normalization.

A Study on the Fatigue Factor as a Cause of Human Error (인간과실을 유발하는 피로요인 분석에 관한 연구)

  • Yang, Won-Jae;Shin, Chul-Ho;Keum, Jong-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.2 s.21
    • /
    • pp.1-6
    • /
    • 2004
  • For many years, fatigue was discounted as a potential cause of or contributor to human error. However, resent accident data and research point to fatigue as a cause of and/or contributor to human error precisely because of its impact on performance. The goal of this study is to analyze and examine of the fatigue factors related to human error. In this study, we carried out the questionnaire sw-vey which concerned with the fatigue factors.

  • PDF

An Analysis of the Fatigue Factor as a Cause of Human Error (항해사의 피로요인 분석에 관한 연구)

  • Yang, Yang;Keum, Jong-Soo;Jun, Seung-Hwan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.95-100
    • /
    • 2005
  • For many years, fatigue of ship's crew was discounted as a potential cause of or contributor to human error. However, resent accident data and research point to fatigue as a cause of and/or contributor to human error precisely because of its impact on performance. The goal of this study is to analyze and examine of the fatigue factors related to human error. In this study, we carried out the questionnaire survey which concerned with the fatigue factors.

  • PDF

A study on the Fatigue Factor as a Cause of Human Error (인간과실을 유발하는 피로요인 분석에 관한 연구)

  • Yang Won-Jae;Shin Chul-Ho;Keum Jong-So
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.11a
    • /
    • pp.89-94
    • /
    • 2004
  • For many years, fatigue was discounted as a potential cause of or contributor to human error. However, resent accident data and research point to fatigue as a cause of and/or contributor to human error precisely because of its impact on performance. The goal of this study is to analyze and examine of the fatigue factors related to human error. For this, we carried out the questionnaire survey which concerned with the fatigue factors.

  • PDF

Analysis of error factors of the Fall-of-potential test method in measurements of grounding impedance (전위강하법에 의한 접지임피던스 측정 시 오차요인 분석)

  • Jeon, Byung-Wook;Lee, Su-Bong;Jung, Dong-Cheol;Lee, Bok-Hee;Ahn, Chang-Hwan
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.313-316
    • /
    • 2008
  • This paper presents the error factors of Fall-of-potential test method used in measurements of the grounding-system impedance. This test methods inherently can introduce two possible errors in the measurements of grounding-system impedance: (1) ground mutual resistance due to current flow through ground from the ground electrode to the current probe, (2) ac mutual coupling between the current test lead and the potential test lead. The errors of ground mutual resistances and ac mutual coupling are expressed by the equation in calculating grounding impedance. These equations were calculated by Matlab that is commercial tool using mathematical calculation. The results of calculation were applied to correct grounding impedance.

  • PDF

New approach to calculate Weibull parameters and comparison of wind potential of five cities of Pakistan

  • Ahmed Ali Rajput;Muhammad Daniyal;Muhammad Mustaqeem Zahid;Hasan Nafees;Misha Shafi;Zaheer Uddin
    • Advances in Energy Research
    • /
    • v.8 no.2
    • /
    • pp.95-110
    • /
    • 2022
  • Wind energy can be utilized for the generation of electricity, due to significant wind potential at different parts of the world, some countries have already been generating of electricity through wind. Pakistan is still well behind and has not yet made any appreciable effort for the same. The objective of this work was to add some new strategies to calculate Weibull parameters and assess wind energy potential. A new approach calculates Weibull parameters; we also developed an alternate formula to calculate shape parameters instead of the gamma function. We obtained k (shape parameter) and c (scale parameter) for two-parameter Weibull distribution using five statistical methods for five different cities in Pakistan. Maximum likelihood method, Modified Maximum likelihood Method, Method of Moment, Energy Pattern Method, Empirical Method, and have been to calculate and differentiate the values of (shape parameter) k and (scale parameter) c. The performance of these five methods is estimated using the Goodness-of-Fit Test, including root mean square error, mean absolute bias error, mean absolute percentage error, and chi-square error. The daily 10-minute average values of wind speed data (obtained from energydata.info) of different cities of Pakistan for the year 2016 are used to estimate the Weibull parameters. The study finds that Hyderabad city has the largest wind potential than Karachi, Quetta, Lahore, and Peshawar. Hyderabad and Karachi are two possible sites where wind turbines can produce reasonable electricity.