• Title/Summary/Keyword: potential contact element

Search Result 39, Processing Time 0.03 seconds

Forging Die Design using Ceramic Insert (세라믹 인서트를 이용한 단조 금형설계)

  • 권혁홍
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.9-17
    • /
    • 2000
  • The use of ceramic inserts in steel forging tools offers significant technical and economic advantages over other materi-als of manufacture. These potential benefits can however only be realised by optimal design of the tools so that the ceramic insert are not subjected to stresses that led to their premature failure. In this paper the data on loading of the tools is determined from a commercial forging simulation package as the contact stress distribution on the die-workpiece interface and as temperature distributions in the die. This data can be processed as load input data for a finite-element die-stress analysis. Process simulation and stress analysis are thus combined during the design and a data exchange program has been developed that enables optimal design of the dies taking into account the elastic detections generated in shrink fitting the die inserts and that caused by the stresses generated in the forging process. The stress analysis of the dies is used to determine the stress conditions on the ceramic insert by considering contact and interference effects under both mechanical and thermal loads. Simulation results have been validated as a result of experimental investigation. Laboratory tests on ceramic insert dies have verified the superior performance of the Zirconia and Silicon Nitride ceramic insert in order to prolong maintenance life.

  • PDF

Free Vibration of a Rectangular Plate Partially in Contact with a Liquid at Both Sides (양면에서 부분적으로 유체와 접하는 사각평판의 고유진동)

  • Jeong, Kyeong-Hoon;Lee, Gyu-Mahn;Kim, Tae-Wan;Park, Keun-Bae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.123-130
    • /
    • 2008
  • An analytical method for the free vibration of a flexible rectangular plate in contact with water is developed by the Rayleigh-Ritz method. The plate clamped along the edges is partially contacted with water at both sides. It is assumed that the contained water is incompressible and inviscid. The wet mode shape of the plate is assumed as a combination of the dry mode shapes of a clamped beam. The liquid motion is described by using the liquid displacement potential and determined by using the compatibility conditions along the liquid interface with the plate. Minimizing the Rayleigh quotient based on the energy conservation gives an eigenvalue problem. It is found that the theoretical results can predict excellently the fluid-coupled natural frequencies comparing with the finite element analysis result.

Modeling refractory concrete lining of fluid catalytic cracking units of oil refineries

  • Silva, Ana B.C.G.;Andrade, Henrique C.C.;Fairbairn, Eduardo M.R.;Telles, Jose C.F.;Ribeiro, Fernando L.B.;Toledo-Filho, Romildo D.;Medeiros, Jorivaldo
    • Computers and Concrete
    • /
    • v.25 no.1
    • /
    • pp.29-36
    • /
    • 2020
  • This work presents a numerical modeling procedure to simulate the refractory concrete lining in fluid catalytic cracking units of oil refineries. The model includes the simulation of the anchors that reinforce the contact between the refractory concrete and the steel casing. For this purpose, the constitutive relations of an interface finite element are set to values that represent the homogenized behavior of the anchored interface. The parameters of this constitutive relation can be obtained by experimental tests. The model includes also multi-surface plasticity, in order to represent the behavior of the refractory concrete lining. Since the complexity of real case applications leads to high computational costs, the models presented here were implemented in a high-performance parallelized finite element platform. A case study representing a riser similar to the ones used by the refinery industry demonstrates the potential of the model.

Analysis of Roller Load by Boom Length and Rotation Angle of a Crawler Crane (크롤러 크레인의 붐 길이 선회각도에 의한 롤러 하중 해석)

  • Lee, Deukki;Kang, Jungho;Kim, Taehyun;Oh, Chulkyu;Kim, Jongmin;Kim, Jongmyeong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.83-91
    • /
    • 2021
  • A crawler crane, which consists of a lattice boom, a driving system, and a movable vehicle, is widely used on construction sites. The crawler crane often traverses rough terrain at these sites; as a result, an overload limiter needs to be installed on the crane to prevent it from overturning and breaking. In this paper, we studied the distributed load change in relation to boom length and the angle of rotation of the roller that comes in direct contact with the grounded track shoe. First, we developed a 3D model of a crawler crane and meshed it for finite elements. Then, we performed finite element analysis to derive the load on the roller. Finally, we graphed and examined the roller distributed load data of the case according to boom length and rotation angle. By detecting the load on the roller of the crawler crane, we can predict the potential for the crane to overturn before it happens.

A Study on the Deformation Analysis of Largely Deformed Elasto-Plastic Material Using a Meshfree Method (무요소법에 의한 대변형 탄소성 재료의 변형해석에 관한 연구)

  • Kyu-Taek Han
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.289-298
    • /
    • 2003
  • Meshfree approximations exhibit significant Potential to solve partial differential equations. Meshfree methods have been successfully applied to various problems which the traditional finite element methods have difficulties to handle including the quasi-static and dynamic fracture, large deformation problems, contact problems, and strain localization problems. Reproducing Kernel Particle Method (RKPM) is used in this research fur to its built-in feature of multi-resolution. the sound mathematical foundation and good numerical performance. A formulation of RKPM is reviewed and numerical examples are given to verify the accuracy of the proposed meshfree method for largely deformed elasto-plastic material.

Force Characteristic Analysis of Permanent Magnet Linear Coupling with Vertical Magnetized using an Analytical Magnetic Field Calculations (해석적 방법을 이용한 수직방향으로 자화된 영구자석 선형커플링의 힘 특성 해석)

  • Lee, Jae-Hyun;Choi, Jang-Young
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.742-743
    • /
    • 2015
  • Magnetic couplings are do not require any mechanical contact with the power transmitted to the secondary side according to the primary side. For this reason, well-suited for isolated systems such as vacuums or high pressure. So, this paper presents the force characteristic analysis of the permanent magnet (PM) linear coupling with vertical magnetized using an analytical magnetic field calculations. Based on the definition of governing equations and magnetic vector potential, we obtained the analytical solutions according to the boundary condition for each of the regions. Also, we derived from the force generated in the permanent magnet surface using the Maxwell stress tensor. The analytical results are proved the validity by comparing to the finite element method (FEM).

  • PDF

Parametric Analysis of Tubular-Type Linear Magnetic Couplings with Halbach Array Magnetized Permanent Magnet by Using Analytical Force Calculation

  • Kim, Chang-Woo;Choi, Jang-Young
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.110-114
    • /
    • 2016
  • Magnetic couplings are widely used in various industrial applications because they can transmit magnetic force without any mechanical contact. In addition, linear couplings have many advantages. For example, they do not need to convert rotary motion to linear motion. This paper shows an analytical analysis of tubular type linear magnetic couplings (TLMCs) with a Halbach array magnetized permanent magnet (PM). An analytical method for magnetic fields owing to PMs is performed by using magnetic vector potential as well as Poisson and Laplace equations. Then, the magnetic force is calculated by using the Maxwell stress tensor. The analytical analysis results were compared with finite element method (FEM) results. In addition, we predicted the magnetic force characteristic according to design parameters such as the iron core thickness, inner PM thickness to -outer PM thickness ratio, PM segment ratio of the axial magnetized PM segment and radial magnetized PM segment, and various pole numbers.

Corrosion of Quartz Crystal Marine Sensors in Sea Water (항만센서용 수정진동자의 해수에 의한 부식)

  • 최광재;장상목;김영한
    • Journal of Korean Port Research
    • /
    • v.12 no.2
    • /
    • pp.323-328
    • /
    • 1998
  • A quartz crystal analyzer is utilized to monitor the corrosion process of an aluminum surface of a quartz crystal for marine sensor by sea water. A quartz crystal having 2000 $\AA$ of aluminum layer is installed in a specially designed cell and is in contact with sea water imitated electrolyte solution. While a constant potential is applied to the cell, the resonant frequency and resonant resistance are simultaneously measured using the quartz crystal analyzer. In addition, surface topographs are taken with an atomic force microscope(AFM) and the element analysis of the surface is conducted using an energy dispersive X-ray spectrometer(EDX). The simultaneous measurement of resonant frequency and resonant resistance during the corrosion process explains the change of surface structure caused by the corrosion. The variation of resonant frequency addresses the amount surface metal dissolution. As a conclusion, it is found that a simple measurement using the quartz crystal analyzer can replace the complex monitoring employing large equipments in the investigation of a corrosion process of sensor surface.

  • PDF

Power Generating Characteristics of Zinc Oxide Nanorods Grown on a Flexible Substrate by a Hydrothermal Method

  • Choi, Jae-Hoon;You, Xueqiu;Kim, Chul;Park, Jung-Il;Pak, James Jung-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.640-645
    • /
    • 2010
  • This paper describes the power generating property of hydrothermally grown ZnO nanorods on a flexible polyethersulfone (PES) substrate. The piezoelectric currents generated by the ZnO nanorods were measured when bending the ZnO nanorod by using I-AFM, and the measured piezoelectric currents ranged from 60 to 100 pA. When the PtIr coated tip bends a ZnO nanorod, piezoelectrical asymmetric potential is created on the nanorod surface. The Schottky barrier at the ZnO-metal interface accumulates elecntrons and then release very quickly generating the currents when the tip moves from tensile to compressed part of ZnO nanorod. These ZnO nanorods were grown almost vertically with the length of 300-500 nm and the diameter of 30-60 nm on the Ag/Ti/PES substrate at $90^{\circ}C$ for 6 hours by hydrothermal method. The metal-semiconductor interface property was evaluated by using a HP 4145B Semiconductor Parameter Analyzer and the piezoelectric effect of the ZnO nanorods were evaluated by using an I-AFM. From the measured I-V characteristics, it was observed that ZnO-Ag and ZnO-Au metal-semiconductor interfaces showed an ohmic and a Schottky contact characteristics, respectively. ANSYS finite element simulation was performed in order to understand the power generation mechanism of the ZnO nanorods under applied external stress theoretically.

A HISTOMORPHOMETRIC STUDY OF BONE APPOSITION TO NEWLY DEVELOPED TI-BASED ALLOYS IN RABBIT BONE (가토의 경골에 이식된 새로운 티타늄계 합금 주위의 골형성에 관한 형태학적 연구)

  • Kim, Tae-In
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.5
    • /
    • pp.701-720
    • /
    • 1998
  • Research advances in dental implantology have led to the development of several different types of materials and it is anticipated that continued research will lead to advanced dental implant materials. Currently used pure titanium has relatively low hardness and strength which may limit its ability to resist functional loads as a dental implant. Ti-6Al-4V also has potential problems such as corrosion resistance. osseointegration properties and neurologic disorder due to aluminium and vanadium, known as highly toxic elements, contained in Ti-6Al-4V. Newly developed titanium based alloys(Ti-20Zr-3Nb-3Ta-0.2Pd-1In, Ti-20Zr-3Nb-3Ta-0.2Pd) which do not contain toxic metallic components were designed by the Korea Institute of Science and Technology (KIST) with alloy design techniques using Zr, Nb, Ta, Pd, and In which are known as non-toxic elements. Biocompatibility and osseointegration properties of these newly designed alloys were evaluated after implantation in rabbit femur for 3 months. The conclusions were as follows : 1. Mechanical properties of the new designed Ti based alloys(Ti-20Zr-3Nb-3Ta-0.2Pd-1In, Ti-20Zr-3Nb-3Ta-0.2Pd) demonstrated close hardness and tensile strength values to Ti-6Al-4V. 2. New desinged experimental alloys showed stable corrosion resistance similar to the pure Ti but better than Ti-6Al-4V. However, the corrosion rate was higher for the new alloys. 3. Cell culture test showed that the new alloys have similar cell response compared with pure Ti and Ti-6Al-4V with no cell adverse reaction. 4. New designed alloys showed similar bone-metal contact ratio and osseointegration properties compared to pure Ti and Ti-6Al-4V after 3 months implantation in rabbit femur. 5. Four different surface treatments of the metals did not show any statistical difference of the cell growth and bone-metal contact ratio.

  • PDF