Browse > Article
http://dx.doi.org/10.12989/cac.2020.25.1.029

Modeling refractory concrete lining of fluid catalytic cracking units of oil refineries  

Silva, Ana B.C.G. (Civil Engineering Department, Federal University of Rio de Janeiro, Centro de Tecnologia, Cidade Universitaria)
Andrade, Henrique C.C. (Civil Engineering Department, Federal University of Rio de Janeiro, Centro de Tecnologia, Cidade Universitaria)
Fairbairn, Eduardo M.R. (Civil Engineering Department, Federal University of Rio de Janeiro, Centro de Tecnologia, Cidade Universitaria)
Telles, Jose C.F. (Civil Engineering Department, Federal University of Rio de Janeiro, Centro de Tecnologia, Cidade Universitaria)
Ribeiro, Fernando L.B. (Civil Engineering Department, Federal University of Rio de Janeiro, Centro de Tecnologia, Cidade Universitaria)
Toledo-Filho, Romildo D. (Civil Engineering Department, Federal University of Rio de Janeiro, Centro de Tecnologia, Cidade Universitaria)
Medeiros, Jorivaldo (Engineering Department, PETROBRAS, Centro)
Publication Information
Computers and Concrete / v.25, no.1, 2020 , pp. 29-36 More about this Journal
Abstract
This work presents a numerical modeling procedure to simulate the refractory concrete lining in fluid catalytic cracking units of oil refineries. The model includes the simulation of the anchors that reinforce the contact between the refractory concrete and the steel casing. For this purpose, the constitutive relations of an interface finite element are set to values that represent the homogenized behavior of the anchored interface. The parameters of this constitutive relation can be obtained by experimental tests. The model includes also multi-surface plasticity, in order to represent the behavior of the refractory concrete lining. Since the complexity of real case applications leads to high computational costs, the models presented here were implemented in a high-performance parallelized finite element platform. A case study representing a riser similar to the ones used by the refinery industry demonstrates the potential of the model.
Keywords
numerical modeling; refractory concrete; concrete-steel interfaces;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Linck, E. and Schlett, P.E. (2014), "60 years of petroleum & petrochemicals industry refractories history & opportunities for the future (You Snooze-You Lose!)", http://www.linckrefy.com/assets/60%20Years%20of%20Petroleum%20%20Petrochemical%20Refractories%20History.pdf.
2 Luz, A.P., Gomes, D.T. and Pandolfelli, V.C. (2015), "High-alumina phosphate-bonded refractory castables: $Al(OH)_3$ sources and their effects", Ceram. Int., 41, 9041-9050. https://doi.org/10.1016/j.ceramint.2015.03.276.   DOI
3 Mohod, M.V. (2012), "Performance of steel fiber reinforced concrete", Int. J. Eng. Sci., 1(12), 1-4.
4 Ribeiro, F.L.B. and Coutinho, A.L.G.A. (2005), "Comparison between element, edge and compressed storage schemes for iterative solutions in finite element analyses", Int. J. Numer. Meth. Eng., 63(4), 569-588. https://doi.org/10.1002/nme.1290.   DOI
5 Ribeiro, F.L.B. and Ferreira, I.A. (2007), "Parallel implementation of the finite element method using compressed data structures", Comput. Mech., 41, 31-48. https://doi.org/10.1007/s00466-007-0166-x.   DOI
6 Rodrigues, E.A., Manzoli, O.L., Bitencourt Jr., L.A.G. and Bittencourt, T.N. (2016), "2D mesoscale model for concrete based on the use of interface element with a high aspect ratio", Int. J. Solid. Struct., 94-95, 112-124. https://doi.org/10.1016/j.ijsolstr.2016.05.004.   DOI
7 Romano, G.Q. (2011), "Interface between steel and refractory concrete exposed to high temperatures: experimental analysis and computational modeling", Ph.D. Thesis, Federal University of Rio de Janeiro, RJ, Brazil. (in Portuguese)
8 Segurado, J. and Llorca, J. (2004), "A new three-dimensional interface finite element to simulate fracture in composites", Int. J. Solid. Struct., 41(11-12), 2977-2993. https://doi.org/10.1016/j.ijsolstr.2004.01.007.   DOI
9 Silva, A.B.C.G., Telles, J.C.F., Fairbairn, E.M.R., Ribeiro, F.L.B. (2015), "A general tangent operator applied to concrete using a multi-surface plasticity model", Comput. Concrete, 16, 329-342. http://dx.doi.org/10.12989/cac.2015.16.2.329.   DOI
10 Wriggers, P. (2002), Computational Contact Mechanics, John Wiley & Sons.
11 Afroughsabet, V., Biolzi, L. and Ozbakkaloglu, T. (2016), "High-performance fiber-reinforced concrete: a review", J. Mater. Sci., 51, 6517-6551. https://doi.org/10.1007/s10853-016-9917-4.   DOI
12 Andrade, H.C.C., Gonzaga e Silva, A.B.C. and Ribeiro, F.L.B. (2013), "Parallelization of the finite element method for distributed/shared memory architectures", XXXIV CILAMCE - Ibero-Latin-American Congress on Computational Methods in Engineering, Pirenpolis, XXXIVCILAMCE.
13 Angst, U.M., Geiker, M.R., Michel, A., Gehlen, C., Wong, H., Isgor, O.B. and Buenfeld, N. (2017), "The steel concrete interface", Mater. Struct., 50(43), 1-24. https://doi.org/10.1617/s11527-017-1010-1.   DOI
14 Batista, V.H.F., Ainsworth Jr., G.O. and Ribeiro, F.L.B. (2010), "Parallel structurally-symmetric sparse matrix-vector products on multi-core processors", arXiv:1003.0952, 17. https://doi.org/10.4203/ccp.101.22.
15 Gasser, A., Boisse, P., Rousseau, J. and Dutheillet, Y. (2001), "Thermomechanical behavior analysis and simulation of steel/refractory composite linings", Compos. Sci. Technol., 61, 2095-2100. https://doi.org/10.1016/S0266-3538(01)00155-5.   DOI
16 Buyukozturk, O. and Tseng, T.M. (1982), "Termo-mechanical behavior of refractory concrete linings", J. Am. Ceram. Soc., 656, 301-307. https://doi.org/10.1111/j.1151-2916.1982.tb10448.x.   DOI
17 Chang, A.F., Pashikanti, K. and Liu, Y.A. (2012), Refinery Engineering: Integrated Process Modeling and Optimization, Wiley VCH.
18 De Borst, R. (2008), "Numerical methods for the modelling of debonding in composites", Lecture Notes on Composite Materials-Current Topics and Achievements, Springer.
19 De Borst, R. and Schellekens, J.C. (1993), "On the numerical integration of interface elements", Int. J. Numer. Meth. Eng., 36(1), 43-46. https://doi.org/10.1002/nme.1620360104.   DOI
20 Franssen, J.M. and Real, P.V. (2015), "Fire design of steel structures", American Concrete Institute (ACI), ACI-547-R79, Refractory Concrete, Abstract of State-of-the-Art Report.
21 Goodman, R.E., Taylor, R.L. and Brekke, T.L. (1968), "A model for the mechanics of jointed rock", JASCE J. Soil. Mech. Fdns. Div., 94(3), 637-660.
22 Hermann, L.R. (1978), "Finite element analysis of contact problems", J. Eng. Mech., ASCE, 104(5),1043-1057.
23 Kaliakin, V.N. and Li, J. (1995), "Insight into deficiencies associated with commonly used zero-thickness interface elements", Comput. Geotech., 17, 225-252. https://doi.org/10.1016/0266-352X(95)93870-O.   DOI
24 Boisse, P., Gasser, A. and Rousseau, J. (2002), "Computations of refractory lining structures under thermal loadings", Adv. Eng. Softw., 33, 487-496. https://doi.org/10.1016/S0965-9978(02)00064-9.   DOI