• Title/Summary/Keyword: potassium ions

Search Result 190, Processing Time 0.024 seconds

Synergy Effect of K Doping and Nb Oxide Coating on Li1.2Ni0.13Co0.13Mn0.54O2 Cathodes

  • Kim, Hyung Gi;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.377-386
    • /
    • 2021
  • The Li-rich oxides are promising cathode materials due to their high energy density. However, characteristics such as low rate capability, unstable cyclic performance, and rapid capacity fading during cycling prevent their commercialization. These characteristics are mainly attributed to the phase instability of the host structure and undesirable side reactions at the cathode/electrolyte interface. To suppress the phase transition during cycling and interfacial side reactions with the reactive electrolyte, K (potassium) doping and Nb oxide coating were simultaneously introduced to a Li-rich oxide (Li1.2Ni0.13Co0.13Mn0.54O2). The capacity and rate capability of the Li-rich oxide were significantly enhanced by K doping. Considering the X-ray diffraction (XRD) analysis, the interslab thickness of LiO2 increased and cation mixing decreased due to K doping, which facilitated Li migration during cycling and resulted in enhanced capacity and rate capability. The K-doped Li-rich oxide also exhibited considerably improved cyclic performance, probably because the large K+ ions disturb the migration of the transition metals causing the phase transition and act as a pillar stabilizing the host structure during cycling. The Nb oxide coating also considerably enhanced the capacity and rate capability of the samples, indicating that the undesirable interfacial layer formed from the side reaction was a major resistance factor that reduced the capacity of the cathode. This result confirms that the introduction of K doping and Nb oxide coating is an effective approach to enhance the electrochemical performance of Li-rich oxides.

Comparison of the bovine blood gas parameters produced with three types of portable blood gas analyzers

  • Ro, Younghye;Choi, Woojae;Hong, Leegon;Kim, Eunkyung;Choe, Eunhui;Kim, Danil
    • Journal of Veterinary Science
    • /
    • v.23 no.4
    • /
    • pp.60.1-60.6
    • /
    • 2022
  • Background: A definite diagnosis should be made in the bovine practice field, however, it was difficult to perform laboratory analysis immediately. Currently, three types of portable blood gas analyzers are available in Korea. Objectives: This study aimed to evaluate the correlations among these three analyzers. Methods: Seventy-two plasma samples from Holstein-Friesian cows were used for blood gas analysis, and three instruments (EDAN i15 Vet, VETSCAN i-STAT, and EPOC) were operated simultaneously. Moreover, plasma calcium levels were compared between these portable analyzers and blood chemistry device, which is usually used in a laboratory environment. Pearson analysis was performed to confirm the correlation of each parameter produced with the three instruments and blood chemistry analyzer. Results: As results, high correlation was observed in parameters of pH, pO2, potassium ion, ionized calcium, and glucose (p < 0.001, r > 0.7). In addition, pCO2 showed a moderate correlation among the three analyzers (p < 0.001, r > 0.5), and there was no correlation among all instruments for sodium ions. There was also a high correlation between ionized calcium from the three portable devices and total calcium from the biochemistry analyzer (p < 0.001, r > 0.9). Conclusions: In conclusion, there was a high correlation between results from the three different blood gas analyzers used in the bovine clinical field in Korea. Thus, a consistent diagnosis can be made even with different equipment if the operator is aware of the strengths and weaknesses of each piece of equipment and operates it properly.

Genomic Analysis of Halotolerant Bacterial Strains Martelella soudanensis NC18T and NC20

  • Jung-Yun Lee;Dong-Hun Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.11
    • /
    • pp.1427-1434
    • /
    • 2022
  • Two novel, halotolerant strains of Martelella soudanensis, NC18T and NC20, were isolated from deep subsurface sediment, deeply sequenced, and comparatively analyzed with related strains. Based on a phylogenetic analysis using 16S rRNA gene sequences, the two strains grouped with members of the genus Martelella. Here, we sequenced the complete genomes of NC18T and NC20 to understand the mechanisms of their halotolerance. The genome sizes and G+C content of the strains were 6.1 Mb and 61.8 mol%, respectively. Moreover, NC18T and NC20 were predicted to contain 5,849 and 5,830 genes, and 5,502 and 5,585 protein-coding genes, respectively. Both strains contain the identically predicted 6 rRNAs and 48 tRNAs. The harboring of halotolerant-associated genes revealed that strains NC18T and NC20 might tolerate high salinity through the accumulation of potassium ions in a "salt-in" strategy induced by K+ uptake protein (kup) and the K+ transport system (trkAH and kdpFABC). These two strains also use the ectoine transport system (dctPQM), the glycine betaine transport system (proVWX), and glycine betaine uptake protein (opu) to accumulate "compatible solutes," such as ectoine and glycine betaine, to protect cells from salt stress. This study reveals the halotolerance mechanism of strains NC18T and NC20 in high salt environments and suggests potential applications for these halotolerant and halophilic strains in environmental biotechnology.

Gas Permeation Properties of Sulfonated 6FDA-Based Polyimide Membranes Exchanged with Metal Ions (금속이온이 치환된 설폰화된 6FDA계 폴리이미드 막의 기체 투과 특성)

  • Im, Hyeon-Soo;Lee, Byung-Seong;Lee, Bo-Sung;Yoon, Seok-Won;Koh, Hyung-Chul;Lee, Choong-Sub;Ha, Seong-Yong;Cheong, Seong-Ihl;Rhim, Ji-Won
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.555-560
    • /
    • 2009
  • Sulfonic acid of the sulfonated 6FDA-based polyimides were exchanged with the monovalent ($Li^+$, $Na^+$, $K^+$) and divalent ($Mg^{2+}$, $Ca^{2+}$, $Ba^{2+}$) ions. The effect of metal cations exchanged sulfonated polyimides was investigated in terms of gas permeability and selectivity for $CO_2$, $O_2$ and $N_2$ gases. Thermogravimetric analysis showed that thermal stability of sulfonated polyimide was improved by exchanged metal cations. The permeabilities of monovalent cation-exchanged, sulfonated polyimide were reduced as the ion radius reduced [$Li^+$(0.059 nm)>$Na^+$(0.102 nm)>$K^+$(0.138 nm)], and those of divalent cations exchanged were determined by the ionic radii and electrostatic crosslinking between the polymer and metal cations, whereas the selectivities of all the metal cation-exchanged, sulfonated polyimides for $CO_2/N_2$ and $O_2/N_2$, were higher than those of sulfonated polyimide membranes. The sulfonated polyimide exchanged with the potassium cation showed the $O_2$ permeability of 89.98 Barrer [$1\times10^{-10}\;cm^3$(STP) $cm/cm^2{\cdot}s{\cdot}cmHg$] and the sulfonated polyimide exchanged with the lithium cation showed the $O_2/N_2$ selectivity of 12.9.

Leaching Characteristics and Potential Impact Assessment of Pollutants from Field Test Cells with Coal Bottom Ash as Fill Materials for Recycling (석탄 바닥재 메움재 재활용을 위한 Field Test Cells로부터 오염물질 배출 특성 및 잠재적 영향 평가)

  • Jang, Yong-Chul;Lee, Sungwoo;Kang, Heeseok;Lee, Seunghun
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.2
    • /
    • pp.135-145
    • /
    • 2013
  • The recycling of coal bottom ash generated from coal power plants in Korea has been limited due to heterogenous characteristics of the materials. The most common management option for the ash is disposal in landfills (i.e. ash pond) near ocean. The presence of large coarse and fine materials in the ash has prompted the desire to beneficially use it in an application such as fill materials. Prior to reuse application as fill materials, the potential risks to the environment must be assessed with regard to the impacts. In this study, a total of nine test cells with bottom ash samples collected from pretreated bottom ash piles and coal ash pond in a coal-fired power plant were constructed and operated under the field conditions to evaluate the leachability over a period of 210 days. Leachate samples from the test cells were analyzed for a number of chemical parameters (e.g., pH, salinity, electrical conductance, anions, and metals). The concentrations of chemicals detected in the leachate were compared to appropriate standards (drinking water standard) with dilution attenuation factor, if possible, to assess potential leaching risks to the surrounding area. Based on the leachate analysis, most of the samples showed slightly high pH values for the coal ash contained test cells, and contained several ions such as sodium, potassium, calcium, magnesium, chloride, sulfate, and nitrate in relatively large quantities. Three elements (aluminum, boron, and barium) were commonly detected above their respective detection limits in a number of leachate samples, especially in the early leaching period of time. The results of the test cell study indicate that the pollutants in the leachate from the coal ash test cells were not of a major concern in terms of leaching risk to surface water and groundwater under field conditions as fill materials. However, care must be taken in extending these results to actual applications because the results presented in this study are based on the limited field test settings and time frame. Structural characteristics and analysis for coal bottom ash may be warranted to apply the materials to actual field conditions.

Hydrogeochemical Characteristics of Groundwater in the Small Waterworks at Ulju Region, Ulsan (울산 울주지역 소규모 수도시설 지하수의 수리지화학적 특성 연구)

  • Kim, Dongsoo;Kim, MoonSu;Jo, Sungjin;Kim, Ikhyun;Lee, Heonmin;Hwang, Jongyoen;Park, Sunhwa;Jo, Hunje;Kim, Taeseung;Kim, Hyunkoo
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.5
    • /
    • pp.71-81
    • /
    • 2017
  • The hydrogeochemical characteristics of groundwater in the small waterworks are examined with 81 groundwater samples in Ulju region, Ulsan. The pH ranged in 6.3-8.2 and did not exceed the drinking water standards. Electrical conductivity ranged from $50{\mu}S/cm$ to $1,719{\mu}S/cm$. It indicated that the electrical conductivities in groundwaters at the study area are relatively low, compared with other groundwaters in Ulsan area. The calcium concentrations in groundwaters ranged from 3.55 to 113.01 mg/L, and sodium concentrations ranged from 2.02 to 65.50 mg/L. Nitrate concentrations ranged from 0 to 100.56 mg/L and potassium concentrations ranged from N.D (not detected) to 2.50 mg/L. Major cations and anions were mainly derived from the water-rock interaction involving feldspar, gypsum and calcite. The groundwaters were mainly the $Ca-(Na)-HCO_3$ type, classified as the early stage of groundwater evolutions. The correlation between electrical conductivities and Ca concentrations in groundwaters was relatively high ($R^2=0.74$). In the correlations between ions, the correlation coefficient between $SO_4$ and Ca was 0.65 and between Mg and $HCO_3$ was 0.65.

The Removal Characteristics of Cs$^{+}$ and Co$^{++}$ from Aqueous Wastes by Ultrafiltration in Combination with Chemical Treatment Techniques(II) (화학처리와 한외여과막의 결합공정에 의한 Cs 및 Co의 제거특성 (II))

  • 이근우;정경환;김길청;김준형
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.56-64
    • /
    • 1996
  • The objective of this investigation is to establish the rejection characteristics of caesium and cobalt from radioactive liquid waste by chemical/ultrafiltration process. An extensive experimental investigation was conducted with inactive caesium and cobalt ions, utilizing ultrafiltration stirred cell. Caesium and cobalt could be effectively removed from waste solution using copper ferrocyanide and polyarcylic acid(PAA). The rejection dependence of the caesium was found to be a function of caesiun to potassium copper ferrocyanide feed molar ratio. The binding behavior of caesium on K$_2$Cu$_3$(Fe(CN)$\sub$6/)$_2$, particles was explained in terms of a Langmuir adsorption isotherm. When Cs/K$_2$Cu$_3$(Fe(CN)$\sub$6/)$_2$molar ratio was 1.5, the removal of caesium was the most efficient. The rejection efficiency of cobalt is dependent upon various parameters such as pH, cobalt concentration and PAA concentration. The rejection behavior of cobalt was explained in term of a equilibrium model taking into account the reaction between the ligand group, the proton and the cobalt ion. At the conditions of PAA/Co ratio of 2 and pH of 5.6, the removal of cobalt was over 90%. Also, the effect of chemical addition sequence for the simultaneously removal of caesiun and cobalt was discussed.

  • PDF

Hydrogeochemical study of a watershed in Pocheon area: controls of water chemistry

  • Kim, Kyoung-Ho;Yun, Seong-Taek;Chae, Soo-Ho;Jean, Jong-Wook;Lee, Jeong-Ho;Kweon, Hae-Woo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.121-121
    • /
    • 2004
  • The groundwater in the Pocheon area occurs from both a fractured bedrock aquifer in igneous and metamorphic rocks and an alluvial aquifer with a thickness of <50 m, and forms a major source of domestic and agricultural water supply. In this study, we performed a hydrogeochemical study in order to identify the control of geochemical processes on groundwater quality. For this study, groundwater level and physicochemical parameters (EC, Eh, pH, alkalinity) were monitored once a month from a total of 150 groundwater wells between June 2003 to August 2004. A total of 153 water samples (13 surface water, 66 alluvial groundwater, 74 bedrock groundwater) were also collected and analyzed in February 2004. Groundwater chemistry in the study area is very complex, depending on a number of major factors such as geology, degree of chemical weathering, and quality of recharge water. Hydrochemical reactions such as the leaching of surficial and near-solace soil salts, dissolution of calcite, cation exchange, and weathering of silicate minerals are proposed to explain the chemistry of natural groundwater. Alluvial groundwaters locally have very high TDS concentrations, which are characterized by their chloride(nitrate)-sulfate-bicabonate facies and low Na/Cl ratio. Their grondwater levels are highly fluctuated according to rainfall event. We suggest that high nitrate content and salinity in such alluvial groundwaters originates from the local recharge of sewage effluents and/or fertilizers. Likewise, high concentrations of nitrate were also locally observed in some bedrock groundwaters, suggesting their effect of anthropogenic contamination. This is possibly due to the bypass flow taking place through macropores. Tile degree of the weathering of silicate minerals seems to be a major control of the distribution of major cations (sodium, calcium, magnesium, potassium) in bedrock groundwaters, which show a general increase with increasing depth of wells. Thermodynamic interpretation of groundwater chemistry shows that the groundwater in the study area is in chemical equilibrium with kaolinite and Na-montmorillonite, which indicates that weathering of plagioclase to those minerals is a major control of hydrochemistry of bedrock groundwater. The interpretation of the molar ratios among major ions, as well as the mass balance calculation, also indicates the role of both dissolution/precipitation of calcite and Ca-Na cationic exchange as bedrock groundwaters evolves progressively.

  • PDF

Mineral Metabolism in Singleton and Twin-pregnant Dairy Goats

  • Harter, C.J.;Castagnino, D.S.;Rivera, A.R.;Lima, L.D.;Silva, H.G.O.;Mendonca, A.N.;Bonfim, G.F.;Liesegang, A.;St-Pierre, N.;Teixeira, I.A.M.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.1
    • /
    • pp.37-49
    • /
    • 2015
  • During pregnancy, the maternal body undergoes significant physiological changes. The present study assessed the changes on calcium (Ca), phosphorus (P), magnesium (Mg), sodium (Na) and potassium (K) metabolism in singleton and twin-pregnant dairy goats. The 42 goats used ($49.5kg{\pm}7.6$ body weight [BW]) were assigned at random to treatments that were factorially arranged to account for 2 breeds (Oberhasli and Saanen), 2 pregnancy types (singleton and twin) and 3 gestation periods (80, 110, and 140 days). Digestibility trials were performed at 80, 110, and 140 days of gestation. Mineral retention during pregnancy was determined in the maternal body, femur, uterus, mammary gland, fetus and fetal fluid. Blood samples were taken during pregnancy before and after a meal, and Ca, P, Mg, Na, K ions and alkaline phosphatase activity determined in serum. Bone mineral density was determined in the right femur. Statistical analyses were performed using the SAS MIXED procedure. Dry matter intake decreased linearly up to 140 days of gestation. Maternal BW gain, and Ca, P, and Mg retention (g/kg) decreased linearly with the advance of gestation days. Macromineral retention in maternal body (g/kg) was greater in Oberhasli than Saanen goats, and their fetuses had higher Ca, P, and Mg deposition (mg/g). Mineral retention (mg/g) increased in fetuses according to pregnancy development, with no differences between singleton and twin pregnancy. In the mammary gland, the retention of all minerals (g) increased with the days of pregnancy. In conclusion, related to Ca, P, and Mg metabolism can be divided into two stages. Up to 80 days of gestation, was characterized by the preparation of the maternal body reserves for future mineral demands. From 80 days of gestation onward, was characterized by the transfer of maternal body reserves for fetal development and colostrum production. Na and K supply was provided by adjustments in endogenous excretion and an increase in intestinal absorption. Finally, mineral metabolism was specific to each genotype and, except for Na, was not affected by the number of fetuses.