DOI QR코드

DOI QR Code

Leaching Characteristics and Potential Impact Assessment of Pollutants from Field Test Cells with Coal Bottom Ash as Fill Materials for Recycling

석탄 바닥재 메움재 재활용을 위한 Field Test Cells로부터 오염물질 배출 특성 및 잠재적 영향 평가

  • Jang, Yong-Chul (Department of Environmental Engineering, Chungnam National University) ;
  • Lee, Sungwoo (Department of Environmental Engineering, Chungnam National University) ;
  • Kang, Heeseok (Korea Institute of Machinery & Material) ;
  • Lee, Seunghun (Department of Environmental Engineering, Chungnam National University)
  • Received : 2012.11.15
  • Accepted : 2013.02.01
  • Published : 2013.04.30

Abstract

The recycling of coal bottom ash generated from coal power plants in Korea has been limited due to heterogenous characteristics of the materials. The most common management option for the ash is disposal in landfills (i.e. ash pond) near ocean. The presence of large coarse and fine materials in the ash has prompted the desire to beneficially use it in an application such as fill materials. Prior to reuse application as fill materials, the potential risks to the environment must be assessed with regard to the impacts. In this study, a total of nine test cells with bottom ash samples collected from pretreated bottom ash piles and coal ash pond in a coal-fired power plant were constructed and operated under the field conditions to evaluate the leachability over a period of 210 days. Leachate samples from the test cells were analyzed for a number of chemical parameters (e.g., pH, salinity, electrical conductance, anions, and metals). The concentrations of chemicals detected in the leachate were compared to appropriate standards (drinking water standard) with dilution attenuation factor, if possible, to assess potential leaching risks to the surrounding area. Based on the leachate analysis, most of the samples showed slightly high pH values for the coal ash contained test cells, and contained several ions such as sodium, potassium, calcium, magnesium, chloride, sulfate, and nitrate in relatively large quantities. Three elements (aluminum, boron, and barium) were commonly detected above their respective detection limits in a number of leachate samples, especially in the early leaching period of time. The results of the test cell study indicate that the pollutants in the leachate from the coal ash test cells were not of a major concern in terms of leaching risk to surface water and groundwater under field conditions as fill materials. However, care must be taken in extending these results to actual applications because the results presented in this study are based on the limited field test settings and time frame. Structural characteristics and analysis for coal bottom ash may be warranted to apply the materials to actual field conditions.

Keywords

References

  1. 김동수, 김연희, 윤옥, 백계진, 문용운, 2010, 광주지역 지하수 성분분포 특성에 관한 연구, 한국환경분석학회지, 13(2) 59-66.
  2. 김무한, 최세진, 이종호, 2003, 석탄회를 잔골재 대체재로서 사용한 콘크리트의 공학적 특성에 관한 연구, 한국폐기물학회지, 20(1) 59-64.
  3. 김성수, 김동현, 김종필, 2000, Bottom-ash를 사용한 고유동충전재의 물리적 특성에 관한 실험적 연구, 대진대학교첨단소재연구소, 3, 37-48.
  4. 김영진, 2005, Bottom Ash를 활용한 콘크리트용 골재 사용의 실험연구, 한서대학교, 석사학위논문.
  5. 김재관, 조성덕, 김종진, 2002, 배연탈질 석탄회의 물리,화학적 특성, 한국폐기물학회지, 19(6) 730-739.
  6. 김형무, 2005, 바텀애시(Bottom Ash)를 활용한 콘크리트의 강도 특성에 관한 연구, 부산대학교, 석사학위논문.
  7. 대한전기협회, 2011, 전기연감.
  8. 류완호, 이원묵, 홍필선, 양천회, 안재영, 백일현, 이병노, 1997, 석탄회를 이용한 제올라이트의 합성과 중금속 흡착특성, 화학공학회지, 41(5) 655-660.
  9. 류혜림, 2010, 유기오염물질의 위해성평가에 오염 현장의 특이성을 반영하기 위한 생물학적 이용성과 희석저감계수 결정기법 연구, 서울대 대학원.
  10. 윤희정, 이승우, 2009, 홍천계방산지역 내 강수의 산성도와 이온 균형성에 관한 연구, 한국임학회지, 98(6) 712-718.
  11. 임남웅, 이생근, 임종욱, 2004, 화력발전소 Ash Pond에 매장되어 있는 Bottom ash를 잔골재로 이용한 시멘트 모르터의 물성 연구, 대한환경공학회, 춘계학술연구발표회 2004. 4.29-5,1.
  12. 장용철, 이성우, 임종명, 2009, 화력발전소 석탄 바닥재의 재활용을 위한 물리화학적 특성분석 및 환경성 평가, 한국폐기물학회지, 26(8) 680-689.
  13. 진신성, 김정환, 김남찬, 1997, 모형매립조를 이용한 침출수 초기특성에 관한 연구, 광운대학교 신기술연구소, 26 233-240.
  14. 천병식, 여유현, 2000, 구조물 뒷채움재로서의 석탄회 활용에 관한 연구, 한국해양공학회, 14(1) 74-79.
  15. 한국자원리사이클링학회, 2004, 리사이클백서.
  16. 환경부, 2004, 철강슬래그 및 석탄재 배출사업자의 재활용 지침, 환경부 고시 2004-49호.
  17. 환경부, 2011, 폐기물공정시험법.
  18. 황 주 영 , 2002, Bottom-ash 에 의 한 pchlorophenol 과 Orange II 의 경쟁 흡착특성, 영남대학교, 석사학위논문.
  19. Canpolat, F., Y1lmaz, K., Kose, M., Sumer, M., and Yurdusev, M., 2004, Use of zeolite, coal bottom ash and fly ash as replacement materials in cement production, Cement and Concrete Research, 34, 731-735. https://doi.org/10.1016/S0008-8846(03)00063-2
  20. Flaten, TP., 1987, Geographical associations between aluminum in drinking water and dementia, Parkinson's disease and amyotrophic lateral scoliosis in Norway, Trace Elements Med, 4, 179-180.
  21. Flaten, TP., 2001, Aluminium as a risk factor in Alzheimer's disease, with emphasis on drinking water, Brain Research Bulletin, 55(2) 187-196. https://doi.org/10.1016/S0361-9230(01)00459-2
  22. Koca, D., and Koca, H., 2009, Recycling of coal combustion wastes, Waste Management, 27, 267-273. https://doi.org/10.1177/0734242X08089314
  23. Kolay, P., Singh, D., and Murti, M., 2001 Synthesis of zeolites from a lagoon ash, Fuel, 80, 739-745. https://doi.org/10.1016/S0016-2361(00)00135-6
  24. Kurama H., and Kaya M., 2008, Usage of coal combustion bottom ash in concrete mixture, Construction and Building Materials, 28(9) 1922-1928.
  25. Izquierdo Maria, Querol Xavier, Josa Alejandro, Vazquez Enric, Lopez-Soler Angel, 2008, Comparison between laboratory and field leachability of MSWI bottom ash as a road material, Science of The Total Environment, 389(1) 10-19. https://doi.org/10.1016/j.scitotenv.2007.08.020
  26. Andrade L.B., Rocha J.C., Cheriaf M., 2007, Aspects of moisture kinetics of coal bottom ash in concrete, Cement and Concrete Research, 37(2) 231-241. https://doi.org/10.1016/j.cemconres.2006.11.001
  27. Ozakan O., Yuksel, I., and Muratoglu, O., 2007, Strength properties of concrete incorporating coal bottom ash and granulated blast furnace slag, Waste Management, 27, 161-167. https://doi.org/10.1016/j.wasman.2006.01.006
  28. US EPA, 1996a, Test methods for evaluating solid waste. SW-846, 3RD Ed. SW-846 Method 1311, Office of Solid Waste, Washington DC.
  29. US EPA, 1996b, Test methods for evaluating solid waste. SW-846, 3RD Ed. SW-846 Method 1312, Office of Solid Waste, Washington DC.
  30. Targan, S., Olgun, A., Erdogan, Y., and Sevinc, V., 2003, Influence of natural pozzolan, colemanite ore waste, bottom ash, and fly ash on the properties of Portland cement, Cement and Concrete Research, 33, 1175-1182. https://doi.org/10.1016/S0008-8846(03)00025-5
  31. Yazici, H., 2007, Utilization of coal combustion byproducts in building blocks, Fuel, 86, 929-937. https://doi.org/10.1016/j.fuel.2006.10.014