• Title/Summary/Keyword: positioning control

Search Result 1,160, Processing Time 0.04 seconds

Neuro-controller for a XY Positioning Table

  • Jang, Jun-Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.581-586
    • /
    • 2003
  • This paper presents control designs using neural networks (NN) for a XY positioning table. The proposed neurocontroller is composed of an outer PD tracking loop for stabilization of the fast flexible-mode dynamics and an NN inner loop used to compensate for the system nonlinearities. A tuning algorithm is given for the NN weights, so that the NN compensation scheme becomes adaptive, guaranteeing small tracking errors and bounded weight estimates. Formal nonlinear stability proofs are given to show that the tracking error is small. The proposed neuro-controller is implemented and tested on an IBM PC-based XY positioning table, and is applicable to many precision XY tables. The algorithm, simulation, and experimental results are described. The experimental results are shown to be superior to those of conventional control.

  • PDF

FLEXIBLE ARM POSITIONING USING $H_\infty$ CONTROL THEORY WITH OPTIMUM SENSOR LOCATION

  • Estiko, Rijanto;Nishigaya, Shinya;Moran, Antonio;Hayase, Minoru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.461-466
    • /
    • 1994
  • This paper is concerned with the positioning control of a flexible arm system using H$_{\infty}$ control theory with optimum sensor location. Firstly, by virtue of the orthogonality of the flexible modes of the flexible arm a reduced order model of the tributed parameter system(DPS) representing the arm has formulated. The dynamical coupling between the flexible arm and DC motor has been considered to formulate an motor composite model. In order to achieve precise positioning with vibration attenuation, sensors have been optimally located. Finally, a robust H$_{\infty}$ controller was designed and the performance of the positioning system has been analyzed.d.

  • PDF

Robust Motion Controller Design for Flexible XY Positioning Systems (유연한 XY 위치결정 시스템을 위한 강인 동작 제어기 설계)

  • 김봉근;박상덕;정완균;염영일
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.1
    • /
    • pp.82-89
    • /
    • 2003
  • A robust motion control method is proposed fur the point-to-point position control of a XY positioning system which consists of a base cart, elastic ben and moving mass. The horizontal motion controller consists of the feedforward controller to suppress the single mode vibration of the elastic beam and the feedback controller to get the high-accuracy positioning performance of the base cart. Input preshaping vibration suppression method based on system modeling with analytic frequency equation is proposed and integrated into the robust internal-loop compensator(RIC) to increase the robustness of the whole closed-loop system The vertical motion controller is proposed based on the dual RIC structure. Through experiments, it is shown that the proposed method can stabilize the system and suppress the vibration in the presence of uncertainties and disturbances.

A Positioning Method of Distributed Power System by Considering Characteristics of Droop Control in a DC Microgrid

  • Ko, Byoung-Sun;Lee, Gi-Young;Kim, Sang-Il;Kim, Rae-Young;Cho, Jin-Tae;Kim, Ju-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.620-630
    • /
    • 2018
  • In this paper, a positioning method of distributed power system is proposed to minimize the average voltage variation of a DC microgrid through voltage sensitivity analysis. The voltage sensitivity under a droop control depends on the position of the distributed power system. In order to acquire a precise voltage sensitivity under a droop control, we analyzed the power flow by introducing a droop bus with the considerations of the droop characteristics. The results of the positioning method are verified through PSCAD/EMTDC simulation.

A study on time optimal positioning control of robotic manipulator (로보트 팔의 최소시간 위치제어에 관한 연구)

  • 김종찬;배준경;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.45-48
    • /
    • 1986
  • In this paper, time optimal positioning control of the robotic manipulator is discussed. The equations for dynamic model of the robotic manipulator are nonolinear, and each link is highly coupled. A feedback linearizing and decoupling transformation makes the dynamic model linearized and decoupled, and optimal control input for the linear and decoupled system is derived.

  • PDF

A Novel Picometer Positioning System for Machine Tools and Measuring Machines

  • Mizumoto, Hiroshi;Yabuta, Yoshito;Arii, Shiroh;Tazoe, Yoichi;Kami, Yoshihiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.123-128
    • /
    • 2005
  • A novel tri-mode ultraprecision positioning system for machine tools and measuring machine is proposed. The basic coarse mode uses a Twist-roller Friction Drive (abbr. TFD), and controls several tens of millimeters of the machine-table travel with nanometer order of positioning resolution. The fine mode also utilizes the TFD with a fine adjusting mechanism. The resolution of the fine mode is in the range of sub-nanometer. For realizing picometer positioning, the ultra-fine mode is executed by using an active aerostatic guideway. On the bearing surface of this active guideway, several Active Inherent Restrictors (abbr. AIRs) are embedded for controlling the table position. An AIR unit consists of a piezoelectric actuator having a through hole, one end of the hole on the bearing surface acts as an inherent restrictor. Owing to the aerostatic mechanism of the AIR, the deformation of the piezoelectric actuator in the AIR unit causes much reduced table displacement. Such motion reduction is effective for ultraprecision positioning. Current positioning resolution of the ultra-fine mode is 50pm, however the final goal of the positioning resolution is expected to be in the order of picometer.

  • PDF

An Error Analysis of GPS Positioning (GPS를 이용한 위치 결정에서의 오차 해석)

  • Park, Chansik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.6
    • /
    • pp.550-557
    • /
    • 2001
  • There are several applications and error analysis methods using GPS(Global Positioning System) In most analysis positioning and timing errors are represented as the multiplication of DOP(Dilution Of Precision) and measurement errors, which are affected by the receiver and measurement type. Therefore, lots of DOPs are defined and used to analyze and predict the performance of positioning and timing systems. In this paper, the relationships between these DOPs are investigated in detail, The relationships between GDOP(Geometric DOP), PDOP(Position DOP) and TDOP(Time DOP) in the absolute positioning are de-rived. Using these relationships, the affect of clock bias is analyzed. The relationships between RGDOP(Relative DOP) and PDOP are also derived in relative positioning where the single difference and double dif-ference techniques are used. From the results, it is expected that using the common clock will give better performance when the single difference technique is used while the effects of clock is eliminate when the double difference technique is used. Finally, the error analyses of dual frequency receivers show that the narrow lane measurements give more accurate results than wide line of or L1. L2 independent measurements.

  • PDF

Improved Ultrasonic Satellite System for the Localization of Mobile Robots (이동로봇의 위치측정을 위한 개선된 초음파 위성 시스템)

  • Kim, Su-Yong;Yoon, Kang-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1240-1247
    • /
    • 2011
  • The localization of mobile robot in environment is a major concern in mobile robot navigation. So, many kinds of localization techniques have been researched for several years. Among them, the positioning system using ultrasound has received attention. Most of these ultrasonic positioning systems to synchronize the transmitters and receivers are used for RF (Radio Frequencies). However, due to the use of RF, the interference problems can not be avoided and the performance of radio frequencies directly affects the positioning performance. So we proposed the ultrasonic positioning system without synchronizing RF. The proposed system is based on existing USAT (Ultrasonic Satellite System) adopted infrastructure transmitting type, and consists of transmitter and receiver synchronizing modules instead of the radio frequency transmitters and receiver. The ultrasonic transmitters and receivers are synchronized individually by the transmitter and receiver synchronizing modules. In order to calculate the bias between the transmitter and receiver synchronizing modules, new positioning algorithm similar to GPS was proposed. The positioning performance of the improved USAT without synchronizing RF and the validity of the proposed positioning algorithm are verified and evaluated by experiments.