• Title/Summary/Keyword: positioning control

Search Result 1,160, Processing Time 0.027 seconds

Development of GPS/IMU/SPR Integrated Algorithm and Performance Analysis for Determination of Precise Car Positioning (정밀 차량 위치결정을 위한 GPS/IMU/SPR 통합 알고리즘 개발 및 성능 분석)

  • Han, Joong-Hee;Kang, Beom Yeon;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.2
    • /
    • pp.163-171
    • /
    • 2014
  • Based on the GPS/IMU integration, the car navigation has unstable conditions as well as drastically reduces accuracies in urban region. Nowadays, many cars mounted the camera to record driving states. If the ground coordinates of street furniture are known, the position and attitude of camera can be determined through SPR(Single Photo Resection). Therefore, an estimated position and attitude from SPR can be applied measurements in Kalman filter for updating errors of navigation solutions from GPS/IMU integration. In this study, the GPS/IMU/SPR integration algorithm was developed in loosely coupled modes through extended Kalman filters. Also, in order to analyze performances of GPS/IMU/SPR, simulation tests were conducted in GPS signal reception environments and the GCPs (Ground Control Points) distributions. In fact, the position and attitude gathered from GPS/IMU/SPR integration are more precise than the position and attitude from GPS/IMU integration. When IPs (image points), corresponded to GCPs, were concentrated in the center of image, the position error in the optical axis respectively increased. To understand effects from SPR, we plan to carry additional test on the magnitude of GCP, IP and initial exterior orientation errors.

Earth-Volume Measurement of Small Area Using Low-cost UAV (저가형 UAV를 이용한 소규모지역의 토량 측정)

  • Seong, Ji Hoon;Han, You Kyung;Lee, Won Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.4
    • /
    • pp.279-286
    • /
    • 2018
  • In the civil works, the measurement of earth-volume is one of the important elements in the estimation of the reasonable construction cost. Related studies mainly used GPS (Global Positioning System) or total station to obtain information on civil work areas. However, these methods are difficult to implement in inaccessible areas. Therefore, the aim of this paper is to use the UAV (Unmanned Aerial Vehicle) to measure the earth-volume. The study area is located in a reservoir construction site in Sangju-si, Gyeongsangbuk-do, Republic of Korea. We compared the earth-volume amounts acquired by UAV-based surveying to ones acquired by total station-based and GPS-based surveying, respectively. In the site, the amount of earth-volume acquired by GPS was $147,286.79m^3$. The amount of earth-volume acquired by total station was $147,286.79m^3$, which is the 96.13% accuracy compared to the GPS-based surveying. The earth-volume obtained by UAV was $143,997.05m^3$ when measured without GCPs (Ground Control Points), $147,251.71m^3$ with 4 GCPs measurement, and $146,963.81m^3$ with 7 GCPs measurement. Compared to the GPS-based surveying, 97.77%, 99.98%, and 99.78% accuracies were obtained from the UAV-based surveying without GCP, 4 GCPs, and 7 GCPs, respectively. Therefore, it can be confirmed that the UAV-based surveying can be used for the earth-volume measurement.

A Study on Improving Accuracy of Subway Location Tracking using WiFi Fingerprinting (WiFi 핑거프린트를 이용한 지하철 위치 추적 정확성 향상을 위한 연구)

  • An, Taeki;Ahn, Chihyung;Nam, Myungwoo;Park, Jinhong;Lee, Youngseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • In this study, an WiFi fingerprinting method based on the k-nn algorithm was applied to improve the accuracy of location tracking of a moving train on a platform and evaluate the performance to minimize the estimation error of location tracking. The data related to the position of the moving train are monitored by the control center for trains and used widely for the safety and comfort of passengers. The train location tracking methods based on WiFi installed by telecom companies were evaluated. In this study, a simulator was developed to consider the environments of two cases; in already installed WiFi devices and new installed WiFi devices. The developed simulator can simulate the localized estimation of the position under a variety of conditions, such as the number of WiFi devices, the area of platform and entry velocity of train. To apply location tracking algorithms, a k-nn algorithm and fuzzy k-nn algorithm were applied selectively according to the underlying condition and also four distance measurement algorithms were applied to compare the error of location tracking. In conclusion, the best method to estimate train location tracking is a combination of the k-nn algorithm and Minkoski distance measurement at a 0.5m grid unit and 8 WiFi AP installed.

Pedestrian Dead Reckoning based Position Estimation Scheme considering Pedestrian's Various Movement Type under Combat Environments (전장환경 하에서 보행자의 다양한 이동유형을 고려한 관성항법 기반의 위치인식 기법)

  • Park, SangHoon;Chae, Jongmok;Lee, Jang-Myung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.609-617
    • /
    • 2016
  • In general, Personal Navigation Systems (PNSs) can be defined systems to acquire pedestrian positional information. GPS is an example of PNS. However, GPS can only be used where the GPS signal can be received. Pedestrian Dead Reckoning (PDR) can estimate the positional information of pedestrians using Inertial Measurement Unit (IMU). Therefore, PDR can be used for GPS-disabled areas. This paper proposes a PDR scheme considering various movement types over GPS-disabled areas as combat environments. We propose a movement distance estimation scheme and movement direction estimation scheme as pedestrian's various movement types such as walking, running and crawling using IMU. Also, we propose a fusion algorithm between GPS and PDR to mitigate the lack of accuracy of positional information at the entrance to the building. The proposed algorithm has been tested in a real test bed. In the experimental results, the proposed algorithms exhibited an average position error distance of 5.64m and position error rate in goal point of 3.41% as a pedestrian traveled 0.6km.

Development of Traffic Safety Monitoring Technique by Detection and Analysis of Hazardous Driving Events in V2X Environment (V2X 환경에서 위험운전이벤트 검지 및 분석을 통한 교통안전 모니터링기법 개발)

  • Jeong, Eunbi;Oh, Cheol;Kang, Kyeongpyo;Kang, Younsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.6
    • /
    • pp.1-14
    • /
    • 2012
  • Traffic management centers (TMC) collect real-time traffic data from the field and have powerful databases for analysing, recording, and archiving the data. Recent advanced sensor and communication technologies have been widely applied to intelligent transportation systems (ITS). Regarding sensors, various in-vehicle sensors, in addition to global positioning system (GPS) receiver, are capable of providing high resolution data representing vehicle maneuverings. Regarding communication technologies, advanced wireless communication technologies including vehicle-to-vehicle (V2V) and vehicle-to-vehicle infrastructure (V2I), which are generally referred to as V2X, have been widely used for traffic information and operations (references). The V2X environment considers the transportation system as a network in which each element, such as the vehicles, infrastructure, and drivers, communicates and reacts systematically to acquire information without any time and/or place restrictions. This study is motivated by needs of exploiting aforementioned cutting-edge technologies for developing smarter transportation services. The proposed system has been implemented in the field and discussed in this study. The proposed system is expected to be used effectively to support the development of various traffic information control strategies for the purpose of enhancing traffic safety on highways.

Defining the Tumour and Gross Tumor Volume using PET/CT : Simulation using Moving Phantom (양전자단층촬영장치에서 호흡의 영향에 따른 종양의 변화 분석)

  • Jin, Gye-Hwan
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.935-942
    • /
    • 2021
  • Involuntary movement of internal organs by respiration is a factor that greatly affects the results of radiotherapy and diagnosis. In this study, a moving phantom was fabricated to simulate the movement of an organ or a tumor according to respiration, and 18F-FDG PET/CT scan images were acquired under various respiratory simulating conditions to analyze the movement range of the tumor movement by respiration, the level of artifacts according to the size of the tumor and the maximum standardized uptake value (SUVmax). Based on Windows CE 6.0 as the operating system, using electric actuator, electric actuator positioning driver, and programmable logic controller (PLC), the position and speed control module was operated normally at a moving distance of 0-5 cm and 10, 15, and 20 reciprocations. For sphere diameters of 10, 13, 17, 22, 28, and 37 mm at a delay time of 100 minutes, 80.4%, 99.5%, 107.9%, 113.1%, 128.0%, and 124.8%, respectively were measured. When the moving distance was the same, the difference according to the respiratory rate was insignificant. When the number of breaths is 20 and the moving distance is 1 cm, 2 cm, 3 cm, and 5 cm, as the moving distance increased at the sphere diameters of 10, 13, 17, 22, 28, and 37 mm, the ability to distinguish images from smaller spheres deteriorated. When the moving distance is 5 cm compared to the still image, the maximum values of the standard intake coefficient were 18.0%, 23.7%, 29.3%, 38.4%, 49.0%, and 67.4% for sphere diameters of 10, 13, 17, 22, 28, and 37 mm, respectively.

Design of a Compact GPS/MEMS IMU Integrated Navigation Receiver Module for High Dynamic Environment (고기동 환경에 적용 가능한 소형 GPS/MEMS IMU 통합항법 수신모듈 설계)

  • Jeong, Koo-yong;Park, Dae-young;Kim, Seong-min;Lee, Jong-hyuk
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.1
    • /
    • pp.68-77
    • /
    • 2021
  • In this paper, a GPS/MEMS IMU integrated navigation receiver module capable of operating in a high dynamic environment is designed and fabricated, and the results is confirmed. The designed module is composed of RF receiver unit, inertial measurement unit, signal processing unit, correlator, and navigation S/W. The RF receiver performs the functions of low noise amplification, frequency conversion, filtering, and automatic gain control. The inertial measurement unit collects measurement data from a MEMS class IMU applied with a 3-axis gyroscope, accelerometer, and geomagnetic sensor. In addition, it provides an interface to transmit to the navigation S/W. The signal processing unit and the correlator is implemented with FPGA logic to perform filtering and corrrelation value calculation. Navigation S/W is implemented using the internal CPU of the FPGA. The size of the manufactured module is 95.0×85.0×.12.5mm, the weight is 110g, and the navigation accuracy performance within the specification is confirmed in an environment of 1200m/s and acceleration of 10g.

Evaluation of the Efficiency of Use of Fixation Instruments in Computed Tomography-Guided Biopsy of Lung Lesions (전산화단층촬영 유도하 폐 병소의 생검시 고정기구 사용의 효용성 평가)

  • Kim, Dae-Guen;Lee, Joo-Ah
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.7
    • /
    • pp.676-683
    • /
    • 2022
  • Minimizing patient movement during CT-guided lung biopsy is an important factor in the procedure. To minimize movement, a vacuum cushion was used to evaluate its effectiveness. The subjects of this study were 116 patients aged 40 years or older who had good coordination with postural fixation and breathing control. Posture measurements were performed in the supine position, prone position, oblique position, and lateral position according to each position of the lung lesion biopsy lesion. Measurement positions were measured in the anterior, posterior, right, and left positions based on the anatomical posture. In the prone position, the mean difference between the non-use and the use of the posterior was 1.7905, and t=2.913 (p<0.01), and the mean difference between the non-use/use was statistically significant. The difference between the unused and used averages of left was 2.4105, and the difference between the left averages was also significant with t=3.684 (p<0.01). The difference between the unused and used averages of the right was 2.3263, with t=3.791 (p<0.01). The mean difference between unused and used is statistically significant. As a result of statistical analysis, the biopsy of the lung lesion using a fixation device showed less movement in all postures. It is considered that it is meaningful in that it is possible to conduct a more accurate biopsy procedure and minimize the patient's posture movement by using a fixation device during the CT-guided biopsy of the lung lesion.

A Study on Improvement of Satellite Surveying Infrastructure through Analysis of Operation Status of GNSS CORS (GNSS 상시관측소 운영 현황 분석을 통한 위성측량 인프라 개선방안 연구)

  • Park, Joon Kyu;Um, Dae Yong
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.11
    • /
    • pp.933-940
    • /
    • 2017
  • The modern society is changing paradigm by the 4th industrial revolution. In these changes, the importance of geospatial information leading to the fusion and connection of persons and objects is increasing day by day. GNSS CORS(Continuously Operating Reference Station) plays a pivotal role in the geospatial information by providing basic data for surveying control points, mapping, navigation, geophysical research, and so on. On the other hand, the satellite surveying technologies are developing rapidly and it is necessary to investigate the status of the satellite surveying environment and search for future directions. In this study, the environment related to satellite survey by operation status of domestic and overseas CORS(Continuously Operating Reference Station) was tried to analyze. Through the research, The operation status of NGII and IGS CORS were presented. It was found that the availability ratio of multiple satellites to the CORS of NGII are lower than that of IGS CORS. Considering the improvement of positioning performance by using multiple GNSS, it is necessary to use multi-satellites in the future.

Optimization of MRI Protocol for the Musculoskeletal System (근골격계 자기공명영상 프로토콜의 최적화)

  • Hong Seon Lee;Young Han Lee;Inha Jung;Ok Kyu Song;Sungjun Kim;Ho-Taek Song;Jin-Suck Suh
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.1
    • /
    • pp.21-40
    • /
    • 2020
  • Magnetic resonance imaging (MRI) is an essential modality for the diagnosis of musculoskeletal system defects because of its higher soft-tissue contrast and spatial resolution. With the recent development of MRI-related technology, faster imaging and various image plane reconstructions are possible, enabling better assessment of three-dimensional musculoskeletal anatomy and lesions. Furthermore, the image quality, diagnostic accuracy, and acquisition time depend on the MRI protocol used. Moreover, the protocol affects the efficiency of the MRI scanner. Therefore, it is important for a radiologist to optimize the MRI protocol. In this review, we will provide guidance on patient positioning; selection of the radiofrequency coil, pulse sequences, and imaging planes; and control of MRI parameters to help optimize the MRI protocol for the six major joints of the musculoskeletal system.