DOI QR코드

DOI QR Code

Optimization of MRI Protocol for the Musculoskeletal System

근골격계 자기공명영상 프로토콜의 최적화

  • Hong Seon Lee (Department of Radiology, Severance Hospital, Yonsei University College of Medicine) ;
  • Young Han Lee (Department of Radiology, Severance Hospital, Yonsei University College of Medicine) ;
  • Inha Jung (Department of Radiology, Severance Hospital, Yonsei University College of Medicine) ;
  • Ok Kyu Song (Department of Radiology, Severance Hospital, Yonsei University College of Medicine) ;
  • Sungjun Kim (Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science (CCIDS), Yonsei University College of Medicine) ;
  • Ho-Taek Song (Department of Radiology, Severance Hospital, Yonsei University College of Medicine) ;
  • Jin-Suck Suh (Department of Radiology, Severance Hospital, Yonsei University College of Medicine)
  • 이홍선 (연세대학교 의과대학 세브란스병원 영상의학과) ;
  • 이영한 (연세대학교 의과대학 세브란스병원 영상의학과) ;
  • 정인하 (연세대학교 의과대학 세브란스병원 영상의학과) ;
  • 송옥규 (연세대학교 의과대학 세브란스병원 영상의학과) ;
  • 김성준 (연세대학교 의과대학 영상의학교실, 방사선의과학연구소, 의료영상데이터사이언스센터) ;
  • 송호택 (연세대학교 의과대학 세브란스병원 영상의학과) ;
  • 서진석 (연세대학교 의과대학 세브란스병원 영상의학과)
  • Received : 2019.10.30
  • Accepted : 2020.01.21
  • Published : 2020.01.01

Abstract

Magnetic resonance imaging (MRI) is an essential modality for the diagnosis of musculoskeletal system defects because of its higher soft-tissue contrast and spatial resolution. With the recent development of MRI-related technology, faster imaging and various image plane reconstructions are possible, enabling better assessment of three-dimensional musculoskeletal anatomy and lesions. Furthermore, the image quality, diagnostic accuracy, and acquisition time depend on the MRI protocol used. Moreover, the protocol affects the efficiency of the MRI scanner. Therefore, it is important for a radiologist to optimize the MRI protocol. In this review, we will provide guidance on patient positioning; selection of the radiofrequency coil, pulse sequences, and imaging planes; and control of MRI parameters to help optimize the MRI protocol for the six major joints of the musculoskeletal system.

자기공명영상(magnetic resonance imaging; 이하 MRI)은 다른 영상 기법에 비해 연부 조직 대조도와 해상력이 높아 근골격계 영역에서 중요한 진단 기기로 이용되고 있다. 최근 MRI 관련 기술이 발달함에 따라 빠른 영상 촬영 및 다양한 영상면 재구성이 가능해짐으로써 입체적인 근골격계 해부학적 구조와 병변을 더욱 잘 평가할 수 있게 되었다. 또한, MRI는 최적화 정도에 따라 영상의 질, 진단 정확도 및 촬영 시간 등이 달라지며, MRI 장치의 효율적인 운용과도 관련이 있어, 이를 관리하는 것은 영상의학과 의사의 중요한 역할이다. 본 종설에서는 6개 주요 관절에 따른 환자 자세, radiofrequency 코일 선택, 권장 펄스열, 영상면 구성 및 스캔 파라미터에 대한 지침을 제시함으로써 근골격계 MRI의 최적화에 도움이 되고자 한다.

Keywords

References

  1. Del Grande F, Santini F, Herzka DA, Aro MR, Dean CW, Gold GE, et al. Fat-suppression techniques for 3-T MR imaging of the musculoskeletal system. Radiographics 2014;34:217-233 https://doi.org/10.1148/rg.341135130
  2. Korean Society of Magnetic Resonance in Medicine. Clinical magnetic resonance imaging. Seoul: Ilchokak 2015
  3. Jung JY, Yoon YC, Kwon JW, Ahn JH, Choe BK. Diagnosis of internal derangement of the knee at 3.0-T MR imaging: 3D isotropic intermediate-weighted versus 2D sequences. Radiology 2009;253:780-787 https://doi.org/10.1148/radiol.2533090457
  4. Hargreaves BA, Worters PW, Pauly KB, Pauly JM, Koch KM, Gold GE. Metal-induced artifacts in MRI. AJR Am J Roentgenol 2011;197:547-555 https://doi.org/10.2214/AJR.11.7364
  5. Koch KM, Brau AC, Chen W, Gold GE, Hargreaves BA, Koff M, et al. Imaging near metal with a MAVRIC-SEMAC hybrid. Magn Reson Med 2011;65:71-82 https://doi.org/10.1002/mrm.22523
  6. American College of Radiology. ACR-SPR-SSR Practice parameter for the performance and interpretation of magnetic resonance imaging (MRI) of bone, joint, and soft tissue infections in the extremities. Avaiable at. https://www.acr.org/-/media/ACR/Files/Practice-Parameters/MR-Bone-Joint-Infections.pdf?la=en. Published 2016. Accessed Jan 10, 2020
  7. American College of Radiology. ACR-SPR-SSR practice parameter for the performance and interpretation of magnetic resonance imaging (MRI) of bone and soft tissue tumors. Avaiable at. https://www.acr.org/-/media/ACR/Files/Practice-Parameters/MR-SoftTissue-Tumors.pdf?la=en. Published 2015. Accessed Jan 10, 2020
  8. Steinbach LS, Palmer WE, Schweitzer ME. Special focus session: MR arthrography. Radiographics 2002;22:1223-1246 https://doi.org/10.1148/radiographics.22.5.g02se301223
  9. Chandnani VP, Yeager TD, DeBerardino T, Christensen K, Gagliardi JA, Heitz DR, et al. Glenoid labral tears: prospective evaluation with MRI imaging, MR arthrography, and CT arthrography. AJR Am J Roentgenol 1993;161:1229-1235 https://doi.org/10.2214/ajr.161.6.8249731
  10. Cvitanic O, Tirman PF, Feller JF, Bost FW, Minter J, Carroll KW. Using abduction and external rotation of the shoulder to increase the sensitivity of MR arthrography in revealing tears of the anterior glenoid labrum. AJR Am J Roentgenol 1997;169:837-844 https://doi.org/10.2214/ajr.169.3.9275908
  11. Davis SJ, Teresi LM, Bradley WG, Ressler JA, Eto RT. Effect of arm rotation on MR imaging of the rotator cuff. Radiology 1991;181:265-268 https://doi.org/10.1148/radiology.181.1.1887045
  12. Tuite MJ, De Smet AA, Norris MA, Orwin JF. MR diagnosis of labral tears of the shoulder: value of T2*-weighted gradient-recalled echo images made in external rotation. AJR Am J Roentgenol 1995;164:941-944 https://doi.org/10.2214/ajr.164.4.7726053
  13. Willemsen UF, Wiedemann E, Brunner U, Scheck R, Pfluger T, Kueffer G, et al. Prospective evaluation of MR arthrography performed with high-volume intraarticular saline enhancement in patients with recurrent anterior dislocations of the shoulder. AJR Am J Roentgenol 1998;170:79-84 https://doi.org/10.2214/ajr.170.1.9423604
  14. Jee WH. Musculoskeletal magnetic resonance imaging (MRI). Seoul: Korean Society of Musculoskeletal Radiology, Korean Society of Radiology 2017
  15. Korean Society of Radiology. Quality assurance guidelines for special medical equipments. Seoul: Korean Institute for Accreditation of Medical Imaging 2019
  16. Waldt S, Burkart A, Lange P, Imhoff AB, Rummeny EJ, Woertler K. Diagnostic performance of MR arthrography in the assessment of superior labral anteroposterior lesions of the shoulder. AJR Am J Roentgenol 2004;182:1271-1278 https://doi.org/10.2214/ajr.182.5.1821271
  17. Palmer WE, Caslowitz PL. Anterior shoulder instability: diagnostic criteria determined from prospective analysis of 121 MR arthrograms. Radiology 1995;197:819-825 https://doi.org/10.1148/radiology.197.3.7480762
  18. Duc SR, Mengiardi B, Pfirrmann CW, Jost B, Hodler J, Zanetti M. Diagnostic performance of MR arthrography after rotator cuff repair. AJR Am J Roentgenol 2006;186:237-241 https://doi.org/10.2214/AJR.04.1818
  19. Pfirrmann CW, Zanetti M, Weishaupt D, Gerber C, Hodler J. Subscapularis tendon tears: detection and grading at MR arthrography. Radiology 1999;213:709-714 https://doi.org/10.1148/radiology.213.3.r99dc03709
  20. Flannigan B, Kursunoglu-Brahme S, Snyder S, Karzel R, Del Pizzo W, Resnick D. MR arthrography of the shoulder: comparison with conventional MR imaging. AJR Am J Roentgenol 1990;155:829-832 https://doi.org/10.2214/ajr.155.4.2119117
  21. Herold T, Bachthaler M, Hamer OW, Hente R, Feuerbach S, Fellner C, et al. Indirect MR arthrography of the shoulder: use of abduction and external rotation to detect full- and partial-thickness tears of the supraspinatus tendon. Radiology 2006;240:152-160 https://doi.org/10.1148/radiol.2393050453
  22. Hodler J, Kursunoglu-Brahme S, Snyder SJ, Cervilla V, Karzel RP, Schweitzer ME, et al. Rotator cuff disease: assessment with MR arthrography versus standard MR imaging in 36 patients with arthroscopic confirmation. Radiology 1992;182:431-436 https://doi.org/10.1148/radiology.182.2.1489363
  23. Palmer WE, Brown JH, Rosenthal DI. Rotator cuff: evaluation with fat-suppressed MR arthrography. Radiology 1993;188:683-687 https://doi.org/10.1148/radiology.188.3.8351333
  24. Dinauer PA, Flemming DJ, Murphy KP, Doukas WC. Diagnosis of superior labral lesions: comparison of noncontrast MRI with indirect MR arthrography in unexercised shoulders. Skeletal Radiol 2007;36:195-202 https://doi.org/10.1007/s00256-006-0237-7
  25. Kijowski R, Tuite M, Sanford M. Magnetic resonance imaging of the elbow. Part I: normal anatomy, imaging technique, and osseous abnormalities. Skeletal Radiol 2004;33:685-697 https://doi.org/10.1007/s00256-004-0853-z
  26. Holtz P, Erickson SJ, Holmquist K. MR imaging of the elbow: technical considerations. Semin Musculoskelet Radiol 1998;2:121-132 https://doi.org/10.1055/s-2008-1080093
  27. Rubin DA, Kneeland JB. MR imaging of the musculoskeletal system: technical considerations for enhancing image quality and diagnostic yield. AJR Am J Roentgenol 1994;163:1155-1163 https://doi.org/10.2214/ajr.163.5.7976893
  28. Kaplan LJ, Potter HG. MR imaging of ligament injuries to the elbow. Magn Reson Imaging Clin N Am 2004;12:221-232, v-vi https://doi.org/10.1016/j.mric.2004.02.006
  29. Kneeland JB. MR imaging of the elbow. Technical considerations. Magn Reson Imaging Clin N Am 1997;5:439-442 https://doi.org/10.1016/S1064-9689(21)00423-2
  30. Sonin AH, Fitzgerald SW. MR imaging of sports injuries in the adult elbow: a tailored approach. AJR Am J Roentgenol 1996;167:325-331 https://doi.org/10.2214/ajr.167.2.8686595
  31. Hunter JC, Escobedo EM, Wilson AJ, Hanel DP, Zink-Brody GC, Mann FA. MR imaging of clinically suspected scaphoid fractures. AJR Am J Roentgenol 1997;168:1287-1293 https://doi.org/10.2214/ajr.168.5.9129428
  32. Weiss KL, Beltran J, Shamam OM, Stilla RF, Levey M. High-field MR surface-coil imaging of the hand and wrist. Part I. Normal anatomy. Radiology 1986;160:143-146 https://doi.org/10.1148/radiology.160.1.3715025
  33. Kulkarni MV, Patton JA, Price RR. Technical considerations for the use of surface coils in MRI. AJR Am J Roentgenol 1986;147:373-378 https://doi.org/10.2214/ajr.147.2.373
  34. Amrami KK, Felmlee JP. 3-Tesla imaging of the wrist and hand: techniques and applications. Semin Musculoskelet Radiol 2008;12:223-237 https://doi.org/10.1055/s-0028-1083106
  35. Saupe N. 3-tesla high-resolution MR imaging of the wrist. Semin Musculoskelet Radiol 2009;13:29-38 https://doi.org/10.1055/s-0029-1202243
  36. American College of Radiology. ACR-SPR-SSR practice parameter for the performance and interpretation of magnetic resonance imaging of elbow. Avaiable at. https://www.acr.org/-/media/ACR/Files/Practice-Parameters/MR-Elbow.pdf?la=en. Published 2016. Accessed Jan 10, 2020
  37. Scheck RJ, Romagnolo A, Hierner R, Pfluger T, Wilhelm K, Hahn K. The carpal ligaments in MR arthrography of the wrist: correlation with standard MRI and wrist arthroscopy. J Magn Reson Imaging 1999;9:468-474 https://doi.org/10.1002/(SICI)1522-2586(199903)9:3<468::AID-JMRI16>3.0.CO;2-T
  38. Scheck RJ, Kubitzek C, Hierner R, Szeimies U, Pfluger T, Wilhelm K, et al. The scapholunate interosseous ligament in MR arthrography of the wrist: correlation with non-enhanced MRI and wrist arthroscopy. Skeletal Radiol 1997;26:263-271 https://doi.org/10.1007/s002560050233
  39. Haims AH, Schweitzer ME, Morrison WB, Deely D, Lange RC, Osterman AL, et al. Internal derangement of the wrist: indirect MR arthrography versus unenhanced MR imaging. Radiology 2003;227:701-707 https://doi.org/10.1148/radiol.2273020398
  40. Theumann NH, Pfirrmann CW, Chung CB, Antonio GE, Trudell DJ, Resnick D. Pisotriquetral joint: assessment with MR imaging and MR arthrography. Radiology 2002;222:763-770 https://doi.org/10.1148/radiol.2223010466
  41. Schweitzer ME, Natale P, Winalski CS, Culp R. Indirect wrist MR arthrography: the effects of passive motion versus active exercise. Skeletal Radiol 2000;29:10-14 https://doi.org/10.1007/s002560050002
  42. Hayes CW, Balkissoon AA. Magnetic resonance imaging of the musculoskeletal system. II. The hip. Clin Orthop Relat Res 1996;322:297-309 https://doi.org/10.1097/00003086-199601000-00036
  43. Sankey RA, Turner J, Lee J, Healy J, Gibbons CE. The use of MRI to detect occult fractures of the proximal femur: a study of 102 consecutive cases over a ten-year period. J Bone Joint Surg Br 2009;91:1064-1068 https://doi.org/10.1302/0301-620X.91B8.21959
  44. Khanna AJ, Yoon TR, Mont MA, Hungerford DS, Bluemke DA. Femoral head osteonecrosis: detection and grading by using a rapid MR imaging protocol. Radiology 2000;217:188-192 https://doi.org/10.1148/radiology.217.1.r00oc26188
  45. Bollow M, Braun J, Hamm B, Eggens U, Schilling A, Konig H, et al. Early sacroiliitis in patients with spondyloarthropathy: evaluation with dynamic gadolinium-enhanced MR imaging. Radiology 1995;194:529-536 https://doi.org/10.1148/radiology.194.2.7824736
  46. Murphey MD, Wetzel LH, Bramble JM, Levine E, Simpson KM, Lindsley HB. Sacroiliitis: MR imaging findings. Radiology 1991;180:239-244 https://doi.org/10.1148/radiology.180.1.2052702
  47. Horii M, Kubo T, Hirasawa Y. Radial MRI of the hip with moderate osteoarthritis. J Bone Joint Surg Br 2000;82:364-368 https://doi.org/10.1302/0301-620X.82B3.0820364
  48. Dudda M, Albers C, Mamisch TC, Werlen S, Beck M. Do normal radiographs exclude asphericity of the femoral head-neck junction? Clin Orthop Relat Res 2009;467:651-659 https://doi.org/10.1007/s11999-008-0617-5
  49. Omar IM, Zoga AC, Kavanagh EC, Koulouris G, Bergin D, Gopez AG, et al. Athletic pubalgia and "sports hernia": optimal MR imaging technique and findings. Radiographics 2008;28:1415-1438 https://doi.org/10.1148/rg.285075217
  50. Takao M, Sugano N, Nishii T, Tanaka H, Masumoto J, Miki H, et al. Application of three-dimensional magnetic resonance image registration for monitoring hip joint diseases. Magn Reson Imaging 2005;23:665-670 https://doi.org/10.1016/j.mri.2005.02.002
  51. Cvitanic O, Henzie G, Skezas N, Lyons J, Minter J. MRI diagnosis of tears of the hip abductor tendons (gluteus medius and gluteus minimus). AJR Am J Roentgenol 2004;182:137-143 https://doi.org/10.2214/ajr.182.1.1820137
  52. Shuman WP, Castagno AA, Baron RL, Richardson ML. MR imaging of avascular necrosis of the femoral head: value of small-field-of-view sagittal surface-coil images. AJR Am J Roentgenol 1988;150:1073-1078 https://doi.org/10.2214/ajr.150.5.1073
  53. Czerny C, Hofmann S, Urban M, Tschauner C, Neuhold A, Pretterklieber M, et al. MR arthrography of the adult acetabular capsular-labral complex: correlation with surgery and anatomy. AJR Am J Roentgenol 1999;173:345-349 https://doi.org/10.2214/ajr.173.2.10430132
  54. Magee T, Shapiro M, Williams D. Usefulness of simultaneous acquisition of spatial harmonics technique for MRI of the knee. AJR Am J Roentgenol 2004;182:1411-1415 https://doi.org/10.2214/ajr.182.6.1821411
  55. Gold GE, Busse RF, Beehler C, Han E, Brau AC, Beatty PJ, et al. Isotropic MRI of the knee with 3D fast spinecho extended echo-train acquisition (XETA): initial experience. AJR Am J Roentgenol 2007;188:1287-1293 https://doi.org/10.2214/AJR.06.1208
  56. Gold GE, Hargreaves BA, Vasanawala SS, Webb JD, Shimakawa AS, Brittain JH, et al. Articular cartilage of the knee: evaluation with fluctuating equilibrium MR imaging--initial experience in healthy volunteers. Radiology 2006;238:712-718 https://doi.org/10.1148/radiol.2381042183
  57. Buckwalter KA, Pennes DR. Anterior cruciate ligament: oblique sagittal MR imaging. Radiology 1990;175: 276-277 https://doi.org/10.1148/radiology.175.1.2315495
  58. Yu JS, Salonen DC, Hodler J, Haghighi P, Trudell D, Resnick D. Posterolateral aspect of the knee: improved MR imaging with a coronal oblique technique. Radiology 1996;198:199-204 https://doi.org/10.1148/radiology.198.1.8539378
  59. Ha TP, Li KC, Beaulieu CF, Bergman G, Ch'en IY, Eller DJ, et al. Anterior cruciate ligament injury: fast spin-echo MR imaging with arthroscopic correlation in 217 examinations. AJR Am J Roentgenol 1998;170:1215-1219 https://doi.org/10.2214/ajr.170.5.9574587
  60. Mink JH, Levy T, Crues JV 3rd. Tears of the anterior cruciate ligament and menisci of the knee: MR imaging evaluation. Radiology 1988;167:769-774 https://doi.org/10.1148/radiology.167.3.3363138
  61. Ho YY, Stanley AJ, Hui JH, Wang SC. Postoperative evaluation of the knee after autologous chondrocyte implantation: what radiologists need to know. Radiographics 2007;27:207-220 https://doi.org/10.1148/rg.271065064
  62. Kramer J, Recht MP, Imhof H, Stiglbauer R, Engel A. Postcontrast MR arthrography in assessment of cartilage lesions. J Comput Assist Tomogr 1994;18:218-224 https://doi.org/10.1097/00004728-199403000-00009
  63. Brossmann J, Preidler KW, Daenen B, Pedowitz RA, Andresen R, Clopton P, et al. Imaging of osseous and cartilaginous intraarticular bodies in the knee: comparison of MR imaging and MR arthrography with CT and CT arthrography in cadavers. Radiology 1996;200:509-517 https://doi.org/10.1148/radiology.200.2.8685349
  64. McCauley TR. MR imaging evaluation of the postoperative knee. Radiology 2005;234:53-61 https://doi.org/10.1148/radiol.2341031302
  65. Vahlensieck M, Peterfy CG, Wischer T, Sommer T, Lang P, Schlippert U, et al. Indirect MR arthrography: optimization and clinical applications. Radiology 1996;200:249-254 https://doi.org/10.1148/radiology.200.1.8657921
  66. Peh WC, Chan JH. Artifacts in musculoskeletal magnetic resonance imaging: identification and correction. Skeletal Radiol 2001;30:179-191 https://doi.org/10.1007/s002560100341
  67. Van Hecke PE, Marchal GJ, Baert AL. Use of shielding to prevent folding in MR imaging. Radiology 1988;167:557-558 https://doi.org/10.1148/radiology.167.2.3357972
  68. Magee T, Williams D. 3.0-T MRI of meniscal tears. AJR Am J Roentgenol 2006;187:371-375 https://doi.org/10.2214/AJR.05.0487
  69. Shellock FG. Magnetic resonance procedures: health effects and safety. Boca Raton: Crc Press 2000
  70. Raphael B, Haims AH, Wu JS, Katz LD, White LM, Lynch K. MRI comparison of periprosthetic structures around zirconium knee prostheses and cobalt chrome prostheses. AJR Am J Roentgenol 2006;186:1771-1777 https://doi.org/10.2214/AJR.05.1077
  71. Mesgarzadeh M, Schneck CD, Tehranzadeh J, Chandnani VP, Bonakdarpour A. Magnetic resonance imaging of ankle ligaments. Emphasis on anatomy and injuries to lateral collateral ligaments. Magn Reson Imaging Clin N Am 1994;2:39-58 https://doi.org/10.1016/S1064-9689(21)00324-X
  72. Tokuda O, Awaya H, Taguchi K, Matsunga N. Kinematic MRI of the normal ankle ligaments using a specially designed passive positioning device. Foot Ankle Int 2006;27:935-942 https://doi.org/10.1177/107110070602701112
  73. Kneeland JB. Technical considerations for magnetic resonance imaging of the ankle and foot. Magn Reson Imaging Clin N Am 1994;2:23-28 https://doi.org/10.1016/S1064-9689(21)00322-6
  74. Oae K, Takao M, Naito K, Uchio Y, Kono T, Ishida J, et al. Injury of the tibiofibular syndesmosis: value of MR imaging for diagnosis. Radiology 2003;227:155-161 https://doi.org/10.1148/radiol.2271011865
  75. Barr C, Bauer JS, Malfair D, Ma B, Henning TD, Steinbach L, et al. MR imaging of the ankle at 3 Tesla and 1.5 Tesla: protocol optimization and application to cartilage, ligament and tendon pathology in cadaver specimens. Eur Radiol 2007;17:1518-1528 https://doi.org/10.1007/s00330-006-0446-4
  76. Schibany N, Ba-Ssalamah A, Marlovits S, Mlynarik V, Nobauer-Huhmann IM, Striessnig G, et al. Impact of high field (3.0 T) magnetic resonance imaging on diagnosis of osteochondral defects in the ankle joint. Eur J Radiol 2005;55:283-288 https://doi.org/10.1016/j.ejrad.2004.10.015
  77. Moshirfar A, Campbell JT, Khanna AJ, Byank RP, Bluemke DA, Wenz JF Sr. Magnetic resonance imaging of the ankle: techniques and spectrum of disease. J Bone Joint Surg Am 2003;85-A Suppl 4:7-19 https://doi.org/10.2106/00004623-200300004-00002
  78. Ramnath RR. 3T MR imaging of the musculoskeletal system (part II): clinical applications. Magn Reson Imaging Clin N Am 2006;14:41-62 https://doi.org/10.1016/j.mric.2006.01.003
  79. Erickson SJ, Cox IH, Hyde JS, Carrera GF, Strandt JA, Estkowski LD. Effect of tendon orientation on MR imaging signal intensity: a manifestation of the "magic angle" phenomenon. Radiology 1991;181:389-392  https://doi.org/10.1148/radiology.181.2.1924777