• Title/Summary/Keyword: position uncertainty

Search Result 317, Processing Time 0.029 seconds

Experimental Results of Adaptive Load Torque Observer and Robust Precision Position Control of PMSM (PMSM의 정밀 Robust 위치 제어 및 적응형 외란 관측기 적용 연구)

  • Go, Jong-Seon;Yun, Seong-Gu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.3
    • /
    • pp.117-123
    • /
    • 2000
  • A new control method for precision robust position control of a PMSM (Permanent Magnet Synchronous Motor) using asymptotically stable adaptive load torque observer is presented in the paper. Precision position control is obtained for the PMSM system approximately linearized using the field-orientation method. Recently, many of these drive systems use the PMSM to avoid backlashes. However, the disadvantages of the motor are high cost and complex control because of nonlinear characteristics. Also, the load torque disturbance directly affects the motor shaft. The application of the load torque observer is published in [1] using fixed gain. However, the motor flux linkage is not exactly known for a load torque observer. There is the problem of uncertainty to obtain very high precision position control. Therefore, a model reference adaptive observer is considered to overcome the problem of unknown parameter and torque disturbance in this paper. The system stability analysis is carried out using Lyapunov stability theorem. As a result, asymptotically stable observer gain can be obtained without affecting the overall system response. The load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent current which gives fast response. The experimental results are presented in the paper using DSP TMS320c31.

  • PDF

Development of accuracy for the statical inclinometer by error analysis (다축 수준기의 오차분석을 통한 측정 정밀도 향상)

  • Lee J.K.;Park J.J.;Cho N.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1797-1802
    • /
    • 2005
  • In this study, we were developed an accuracy of the proposed two dimensional statical inclinometer what used a position sensitive detector(PSD) by an error analysis. The inclinometer consists of a laser source, a mass, an optic-fiber, and a PSD. The gravity direction on a base platform of the inclinometer is changed by an unknown inclination angle. And a laser spot is moved from the origin to another position of a PSD following a variation of an optical path by the gravity. These processes enable the inclinometer to estimate the inclination angle from distance information of the moving spot. A design methodology on the basis of a sensitivity analysis was applied to improve the measurement performance such as a full measuring range and a resolution. But it still has error factors, so we analyze the uncertainty of the inclinometer to evaluate the systematic errors from alignments, assembly error and so on. The experimental performance evaluation about the design objectives as a measuring range and a resolution was performed. And the validity and the feasibility of the design process were certified by an experimental process. Systematic errors eliminated to improve the accuracy of the inclinometer by the corrected measuring model from the calibration process between the inclination angle and the PSD position instead of the nominal measuring model. The ANOVA(analysis of variance) confirmed the effect of eliminating the systematic errors in the inclinometer. From these methodologies, the proposed inclinometer was able to measure with a high resolution(35.14sec) and a wide range(from $-15^{\circ}\;to\;15^{\circ}$

  • PDF

The Buyer's Remedies for Lack of Conformity under the PELS

  • Lee, Byung-Mun
    • THE INTERNATIONAL COMMERCE & LAW REVIEW
    • /
    • v.40
    • /
    • pp.3-30
    • /
    • 2008
  • This article attempts to describe and analyze the rules on the buyer's remedies for lack of conformity under PELS. It shows that such remedies under the PELS operate in a two-tier remedial scheme which is alien to both domestic and international legal systems. That is, repair and replacement take the position of primary remedy, whereas termination, price reduction and damages are secondary remedies which are available only where the primary remedies cannot be invoked. Notwithstanding its superiority, the PELS have some drawbacks in several aspects. First, the PELS seems to place its focus on the factor of cost except the other factors, for instance, the significance of the lack of conformity, when one decides whether the first tier remedies cause the seller unreasonable effort or expense. It is argued that the factors can be considered by referring to art. 1:302 PECL. Second, the PELS does not expressively provide any exclusion of the seller's right to choose between repair or replacement on the basis of unreasonable uncertainty in reimbursing the expenses advanced by the buyer. It argues that if there is such uncertainty, it should be regarded as causing the buyer an unreasonable inconvenience under art. 4:204(1). Third, the PELS does not seem to properly reflect the consumer's interests in that most consumers prefer to have the absolute right of termination as against the commercial sellers who have a relatively stronger bargaining position. The reasons for that is that there is a big hurdle, i.e., a hierarchy of remedies, to be overcome by the consumer to battle with the commercial seller, and that unavoidable vagueness in defining a minor lack of conformity has been often used against the consumer, but in favour of the commercial seller with a strong bargaining position.

  • PDF

Study on Uncertainty Factors of Head Vibration Measurements

  • Cheung, Wan-Sup;Ryu, Je-Dam;Hong, Dong-Pyo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.101-104
    • /
    • 2004
  • This paper addresses uncertainty issues encountered recently in measuring head vibration using the conventional 6-axis or 9-axis bite-bar Those conventional bite-bars are shown to present insufficient information to measure a complete 6 degree-of-freedom motion of head vibration. In order to overcome such limit, a theoretical measurement model that consists of four 3-axis linear accelerometers is suggested (Theoretical backgrounds presented in this paper shall have been addressed in the international congress of ICA 2004 in this April). It is shown to enable the direct measurement of three angular acceleration components and six angular velocity-dependent nonlinear terms. In audition to the three linear acceleration terms, those nine angular motion-dependent ones are found to make it possible to evaluate the general head vibration for a given position. To examine the feasibility of the proposed method, a newly designed 12-axis bite-bar was developed. Detailed experimental results obtained using the developed 12-axis bite-bar are illustrated in the presentation of this paper, which illustrates what amount of measurement accuracy provides. But, this paper provides more detailed experimental data and extended uncertainty factors.

  • PDF

A Study on DC Motor Control Using Sliding Mode Control (슬라이딩 모드를 이용한 DC 모터 제어에 관한 연구)

  • Yoon, Seong-Sik;Kim, Min-Chan;Park, Seung-Kyu;Ahn, Ho-Gyun;Kim, Sung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1679-1680
    • /
    • 2008
  • DC motor has been widely used in industrial applications, because the performance is excellent on the speed and position system. However, when a system has parameter uncertainty, it is very difficult to guarantee its performance. Sliding mode control is robust for parameter uncertainty. However conventional sliding mode control can not have the properties of PID controller because its sliding surface has lower order dynamics than the original system. In this paper the sliding surface design method is proposed by using virtual state for DC motor speed control. Its design is based on the augmented system whose dynamics have one higher order than that of the original system. As a result, in spite of the parameter uncertainty, the proposed sliding surface can have the same dynamic of nominal system controlled by PID controller. And the reaching phase is removed by setting an initial state which makes the initial sliding surface equal to zero.

  • PDF

Robust Control for Nonlinear Friction Servo System Using Fuzzy Neural Network and Robust Friction State Observer (퍼지신경망과 강인한 마찰 상태 관측기를 이용한 비선형 마찰 서보시스템에 대한 강인 제어)

  • Han, Seong-Ik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.89-99
    • /
    • 2008
  • In this paper, the position tracking control problem of the servo system with nonlinear dynamic friction is issued. The nonlinear dynamic friction contains a directly immeasurable friction state variable and the uncertainty caused by incomplete parameter modeling and its variations. In order to provide the efficient solution to these control problems, we propose the composite control scheme, which consists of the robust friction state observer, the FNN approximator and the approximation error estimator with sliding mode control. In first, the sliding mode controller and the robust friction state observer is designed to estimate the unknown internal state of the LuGre friction model. Next, the FNN estimator is adopted to approximate the unknown lumped friction uncertainty. Finally, the adaptive approximation error estimator is designed to compensate the approximation error of the FNN estimator. Some simulations and experiments on the servo system assembled with ball-screw and DC servo motor are presented. Results show the remarkable performance of the proposed control scheme. The robust friction state observer can successfully identify immeasurable friction state and the FNN estimator and adaptive approximation error estimator give the robustness to the proposed control scheme against the uncertainty of the friction parameters.

The Analysis of Trajectory Tracking Error Caused by the Tolerance of the Design Parameters of a Parallel Kinematic Manipulator (병렬로봇의 설계 공차가 궤적 정밀도에 미치는 영향 분석)

  • Park, Chanhun;Park, DongIl;Kim, Doohyung
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.248-255
    • /
    • 2016
  • Machining error makes the uncertainty of dimensional accuracy of the kinematic structure of a parallel robot system, which makes the uncertainty of kinematic accuracy of the end-effector of the parallel robot system. In this paper, the tendency of trajectory tracking error caused by the tolerance of design parameters of the parallel robot is analyzed. For this purpose, all the position errors are analyzed as the manipulator is moved on the target trajectory. X, Y, Z components of the trajectory errors are analyzed respectively, as well as resultant errors, which give the designer of the manipulator the intuitive and deep understanding on the effects of each design parameter to the trajectory tracking errors caused by the uncertainty of dimensional accuracy. The research results shows which design parameters are critically sensitive to the trajectory tracking error and the tendency of the trajectory tracking error caused by them.

Planning of Compliant Motions for Fixture Loading

  • Yu, Kyeonah
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.62-68
    • /
    • 2000
  • Fixtures are used in almost all phases of machining and assembly to position and hold a part accurately. The class of fixture which consists of 3 locators and 1 clamp(3L/1C) is known as the minimal set that can provide form closure which is a kinematic constraint condition for preventing all planar motions. This type of fixtures has advantages in terms of the number of fixture elements required, the time for clamping, and so on. However it is not widely used in industry because reliable loading scheme has not been reported. In this paper, we propose a method to load the class of 3L/1C fixtures using compliant motions. The planner is developed for synthesizing compliant motions to achieve precise final fixture configuration in the presence of sensing and control uncertainties. A novel approach to eliminate uncertainty in part orientation by adding one extra fixture element called an aligning pin is proposed.

  • PDF

A Covariance Matrix Estimation Method for Position Uncertainty of the Wheeled Mobile Robot

  • Doh, Nakju Lett;Chung, Wan-Kyun;Youm, Young-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1933-1938
    • /
    • 2003
  • A covariance matrix is a tool that expresses odometry uncertainty of the wheeled mobile robot. The covariance matrix is a key factor in various localization algorithms such as Kalman filter, topological matching and so on. However it is not easy to acquire an accurate covariance matrix because we do not know the real states of the robot. Up to the authors knowledge, there seems to be no established result on the covariance matrix estimation for the odometry. In this paper, we propose a new method which can estimate the covariance matrix from empirical data. It is based on the PC-method and shows a good estimation ability. The experimental results validate the performance of the proposed method.

  • PDF

Design of Fuzzy Controller based on Knowledge acquisition and implementation (지식의 습득과 구성에 의한 퍼지 제어기의 설계)

  • Bae, Hyeon;Kim, Seong-Sin;Jung, Jae-Mo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.448-451
    • /
    • 2000
  • Fuzzy control has been researched for application of industrial processes which have no accurate mathematical model and could not controlled by conventional methods because of a lack of quantitative input-output data. Intelligent control approach based on fuzzy logic could directly reflex human thinking and natural language to controller comparing with conventional methods. In this paper, the tested system is constructed for sending a ball to the goal position using wind from two DC motors in the path. This system contains non-linearity and uncertainty because of the characteristic of aerodynamics inside the path. The system used in this experiment could be hardly modeled by mathematic methods and could not be easily controlled by linear control manners. The controller, in this paper could control the system containing non-linearity and uncertainty because it is designed based on the input-output data and experimental knowledge obtained by trials.

  • PDF