• Title/Summary/Keyword: position calibration

Search Result 447, Processing Time 0.03 seconds

The Position/Orientation Determination of a Mobile-Task Robot Using an Active Calibration Scheme

  • Jin, Tae-Seok;Lee, Jang-Myung
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1431-1442
    • /
    • 2003
  • A new method of estimating the pose of a mobile-task robot is developed based upon an active calibration scheme. The utility of a mobile-task robot is widely recognized, which is formed by the serial connection of a mobile robot and a task robot. To be an efficient and precise mobile-task robot, the control uncertainties in the mobile robot should be resolved. Unless the mobile robot provides an accurate and stable base, the task robot cannot perform various tasks. For the control of the mobile robot, an absolute position sensor is necessary. However, on account of rolling and slippage of wheels on the ground, there does not exist any reliable position sensor for the mobile robot. This paper proposes an active calibration scheme to estimate the pose of a mobile robot that carries a task robot on the top. The active calibration scheme is to estimate a pose of the mobile robot using the relative position/orientation to a known object whose location, size, and shape are known a priori. For this calibration, a camera is attached on the top of the task robot to capture the images of the objects. These images are used to estimate the pose of the camera itself with respect to the known objects. Through the homogeneous transformation, the absolute position/orientation of the camera is calculated and propagated to get the pose of a mobile robot. Two types of objects are used here as samples of work-pieces: a polygonal and a cylindrical object. With these two samples, the proposed active calibration scheme is verified experimentally.

Kinematic Calibration of a Cartesian Parallel Manipulator

  • Kim, Han-Sung
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.453-460
    • /
    • 2005
  • In this paper, a prototype Cartesian Parallel Manipulator (CPM) is demonstrated, in which a moving platform is connected to a fixed frame by three PRRR limbs. Due to the orthogonal arrangement of the three prismatic joints, it behaves like a conventional X-Y-Z Cartesian robot. However, because all the linear actuators are mounted at the fixed frame, the manipulator may be suitable for applications requiring high speed and accuracy. Using a geometric method and the practical assumption that three revolute joint axes in each limb are parallel to one another, a simple forward kinematics for an actual model is derived, which is expressed in terms of a set of linear equations. Based on the error model, two calibration methods using full position and length measurements are developed. It is shown that for a full position measurement, the solution for the calibration can be obtained analytically. However, since a ball-bar is less expensive and sufficiently accurate for calibration, the kinematic calibration experiment on the prototype machine is performed by using a ball-bar. The effectiveness of the kinematic calibration method with a ball-bar is verified through the well­known circular test.

KSRBL Data Calibration and Note for Users

  • Bong, Su-Chan;Park, Sung-Hong;Hwangbo, Jung-Eun;Park, Young-Deuk;Lee, Dae-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.91.2-91.2
    • /
    • 2013
  • The Korean Solar Radio Burst Locator (KSRBL) is a solar radio spectrograph observing the frequency range between 0.245-18 GHz with the capability of locating the wideband gyrosynchrotron bursts. Its calibration process consists of antenna calibration, flux calibration, and demodulation. Antenna calibration is to determine the position, the width, and the peak value of the beam, flux calibration is to determine the conversion factor between the measured unit to the Solar Flux Unit (SFU), and demodulation is to determine the burst position and remove the modulation pattern. We introduce the current calibration software and some information that potential users may concern.

  • PDF

A Study on the Sensor Calibration of Motion Capture System using PSD Sensor to Improve the Accuracy (PSD 센서를 이용한 모션캡쳐센서의 정밀도 향상을 위한 보정에 관한 연구)

  • Choi, Hun-Il;Jo, Yong-Jun;Ryu, Young-Kee
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.583-585
    • /
    • 2004
  • In this paper we will deal with a calibration method for low cost motion capture system using psd(position sensitive detection) optical sensor. To measure the incident direction of the light from LED emitted marker, the PSD is used the output current ratio on the electrode of PSD is proportional with the incident position of the light focused by lens. In order to defect the direction of the light, the current output is converted into digital voltage value by opamp circuits peak detector and AD converter with the digital value the incident position is measured. Unfortunately, due to the non-linearly problem of the circuit poor position accuracy is shown. To overcome such problems, we compensated the non-linearly by using least-square fitting method. After compensated the non-linearly in the circuit, the system showed more enhanced position accuracy.

  • PDF

A Study on the Design of Digital Controllers with Automatic Calibration (자동 보정형 디지털 제어기 설계에 관한 연구)

  • 나승유;박민상
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.413-416
    • /
    • 1998
  • Sensitivity and calibration considerations are most important in the design and implementation of real control systems. Ideally parameter changes due to various causes should not appreciably affect the system's performances. But all the values of physical components of the plants and controllers as well as the relevant environmental conditions change in time, thus the output performance can be deteriorated during the operating span of the system. Naturally the duty of calibration or the prevention of performance deterioration due to excessive component sensitivity should be provided to the control system. In this paper, we propose a digital controller which has the capability of calibration and gain adjustment as well as the execution of control law. Specifically the problems of gain adjustment and offset calibration in the light source and CdS sensor module for position measurement in a flexible link system are considerably resolved. The parameters of measurement module are prone to change due to environmental brightness conditions resulting in poor steady state performance of the overall control system. Thus a proper method is necessary to provide correction to the changed values of gain and offset in the position measurement module. The proposed controller, whenever necessary, measures the open-loop characteristics, andthen calculates the offset and sensor gain correction values based on the prepared standard measurements. It is applied to the control of a flexible link system with the gain and offset calibration porblems in the light sensor module for position to show the applicability.

  • PDF

Parameter Calibration of Laser Scan Camera for Measuring the Impact Point of Arrow (화살 탄착점 측정을 위한 레이저 스캔 카메라 파라미터 보정)

  • Baek, Gyeong-Dong;Cheon, Seong-Pyo;Lee, In-Seong;Kim, Sung-Shin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.76-84
    • /
    • 2012
  • This paper presents the measurement system of arrow's point of impact using laser scan camera and describes the image calibration method. The calibration process of distorted image is primarily divided into explicit and implicit method. Explicit method focuses on direct optical property using physical camera and its parameter adjustment functionality, while implicit method relies on a calibration plate which assumed relations between image pixels and target positions. To find the relations of image and target position in implicit method, we proposed the performance criteria based polynomial theorem model that overcome some limitations of conventional image calibration model such as over-fitting problem. The proposed method can be verified with 2D position of arrow that were taken by SICK Ranger-D50 laser scan camera.

A Stability Study on Visual Servoing using Dynamic Calibration (동적 보정을 이용한 비주얼 서보잉에서 안정성에 관한 연구)

  • 김진대;조영식;이상화;이재원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.82-88
    • /
    • 2003
  • Many visual servoing algorithms have been recently developed by the robot vision researchers. They do not, however, consider the stability of servoing system. The camera calibration is the most important factor to the control stability and performance of position based visual servoing. In this article we describe the ECL(End Point Closed Loop) servoing can make no steady state error for the control of 6-DOF robot of which accuracy is dependent on the camera calibration and kinematics. And we propose a dynamic calibration algorithm, which can improve stability and performance of ECL visual servoing. To verify the potential of our approach, we run assembly experiments and present our finding.

Robotic Workplace Calibration Using Teaching Data of Work-Piece Fixed in Robotic Workplace for Robot Off-line Programming (로봇 오프라인 프로그래밍을 위한 작업장에 고정된 공작물 교시 정보를 이용한 로봇작업장 보정)

  • Jeong, Jun Ho;Kuk, Kum Hoan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.615-621
    • /
    • 2013
  • The robot calibration has greatly improved the absolute accuracy of the industrial robot. However, the accuracy of the relative positions of robotic tool-tip at work-points on a work-piece is only slightly corrected by the robot calibration since there has been no practical method to eliminate the elements of the setup position errors at a robotic workplace. A robotic workplace calibration is demonstrated in this paper to minimize the relative position errors between a robot tool-tip and the work-point on a work-piece. The existing teaching and playback method has been developed for the robotic workplace calibration. This paper uses the work-piece fixed in a robotic work-place as measurement equipment instead of a special robot measurement equipment for the robotic workplace calibration. The positive effect of the robotic workplace calibration is supported by the results of computer simulation on an ideal robotic workplace model and an experiment at the actual robotic workplace.

Level Calibration of Ultrasonic Nondestructive Testing Considering Flaw Position (불연속부의 위치를 고려한 초음파비파괴검사 등급보정)

  • Shin, Byoung-Chul;Song, Ho-San;Jeong, Hwa-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.4
    • /
    • pp.155-160
    • /
    • 2001
  • KS-code(KS B 0896) for nondestructive ultrasonic testing classifies the quality level by relative flaw size only. But flaw position is more important than the flaw size. Test blocks having artificial holes near surface show lower yield load than the blocks having deeply located holes from the surface. So, level calibration table was proposed for classifying the quality level of welded steel structures.

  • PDF

Position Calibration System of Automatic Transfer Crane (자동 트랜스퍼 크레인의 위치보정 시스템)

  • 박경택;박찬훈;신영재;강병수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.515-520
    • /
    • 2002
  • Automatic Transfer Crane is needed for automation of container terminal. It requires the control capability of exact position for loading/unloading job in yard. But it has the limitation of improvement because it has the operational environmental and its structural problems. It has the positioning errors caused by the deformation of rail, yawing motion of crane, wear of wheel, sliding motion between wheel and rail and so on. This study shows the calibration method of crane position by using the primitivity sensor and calibrating plate fixed on the ground.

  • PDF