• Title/Summary/Keyword: pose recognition

Search Result 278, Processing Time 0.026 seconds

Real-Time Object Tracking Algorithm based on Pattern Classification in Surveillance Networks (서베일런스 네트워크에서 패턴인식 기반의 실시간 객체 추적 알고리즘)

  • Kang, Sung-Kwan;Chun, Sang-Hun
    • Journal of Digital Convergence
    • /
    • v.14 no.2
    • /
    • pp.183-190
    • /
    • 2016
  • This paper proposes algorithm to reduce the computing time in a neural network that reduces transmission of data for tracking mobile objects in surveillance networks in terms of detection and communication load. Object Detection can be defined as follows : Given image sequence, which can forom a digitalized image, the goal of object detection is to determine whether or not there is any object in the image, and if present, returns its location, direction, size, and so on. But object in an given image is considerably difficult because location, size, light conditions, obstacle and so on change the overall appearance of objects, thereby making it difficult to detect them rapidly and exactly. Therefore, this paper proposes fast and exact object detection which overcomes some restrictions by using neural network. Proposed system can be object detection irrelevant to obstacle, background and pose rapidly. And neural network calculation time is decreased by reducing input vector size of neural network. Principle Component Analysis can reduce the dimension of data. In the video input in real time from a CCTV was experimented and in case of color segment, the result shows different success rate depending on camera settings. Experimental results show proposed method attains 30% higher recognition performance than the conventional method.

Development of the Hippocampal Learning Algorithm Using Associate Memory and Modulator of Neural Weight (연상기억과 뉴런 연결강도 모듈레이터를 이용한 해마 학습 알고리즘 개발)

  • Oh Sun-Moon;Kang Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.4 s.310
    • /
    • pp.37-45
    • /
    • 2006
  • In this paper, we propose the development of MHLA(Modulatory Hippocampus Learning Algorithm) which remodel a principle of brain of hippocampus. Hippocampus takes charge auto-associative memory and controlling functions of long-term or short-term memory strengthening. We organize auto-associative memory based 3 steps system(DG, CA3, CAl) and improve speed of learning by addition of modulator to long-term memory learning. In hippocampal system, according to the 3 steps order, information applies statistical deviation on Dentate Gyrus region and is labelled to responsive pattern by adjustment of a good impression. In CA3 region, pattern is reorganized by auto-associative memory. In CAI region, convergence of connection weight which is used long-term memory is learned fast by neural networks which is applied modulator. To measure performance of MHLA, PCA(Principal Component Analysis) is applied to face images which are classified by pose, expression and picture quality. Next, we calculate feature vectors and learn by MHLA. Finally, we confirm cognitive rate. The results of experiments, we can compare a proposed method of other methods, and we can confirm that the proposed method is superior to the existing method.

Implementation of a Transition Rule Model for Automation of Tracking Exercise Progression (운동 과정 추적의 자동화를 위한 전이 규칙 모델의 구현)

  • Chung, Daniel;Ko, Ilju
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.5
    • /
    • pp.157-166
    • /
    • 2022
  • Exercise is necessary for a healthy life, but it is recommended that it be conducted in a non-face-to-face environment in the context of an epidemic such as COVID-19. However, in the existing non-face-to-face exercise content, it is possible to recognize exercise movements, but the process of interpreting and providing feedback information is not automated. Therefore, in this paper, to solve this problem, we propose a method of creating a formalized rule to track the contents of exercise and the motions that constitute it. To make such a rule, first make a rule for the overall exercise content, and then create a tracking rule for the motions that make up the exercise. A motion tracking rule can be created by dividing the motion into steps and defining a key frame pose that divides the steps, and creating a transition rule between states and states represented by the key frame poses. The rules created in this way are premised on the use of posture and motion recognition technology using motion capture equipment, and are used for logical development for automation of application of these technologies. By using the rules proposed in this paper, not only recognizing the motions appearing in the exercise process, but also automating the interpretation of the entire motion process, making it possible to produce more advanced contents such as an artificial intelligence training system. Accordingly, the quality of feedback on the exercise process can be improved.

Recent Findings on the Role of Epigenetic Regulators in the Small-cell Lung Cancer Microenvironment (소세포폐암의 미세환경에서 후성학적 조절인자의 역할에 대한 최신 연구 동향)

  • Min Ho Jeong;Kee-Beom Kim
    • Journal of Life Science
    • /
    • v.34 no.7
    • /
    • pp.520-530
    • /
    • 2024
  • Tumor suppressor genes (TSGs) play a crucial role in maintaining cellular homeostasis. When the function of these genes is lost, it can lead to cellular plasticity that drives the development of various cancers, including small-cell lung cancer (SCLC), which is known for its aggressive nature. SCLC is primarily driven by numerous loss-of-function mutations in TSGs, often involving genes that encode epigenetic regulators. These mutations pose a significant therapeutic challenge as they are not directly targetable. However, understanding the molecular changes resulting from these mutations might provide insights for developing tumor intervention strategies. We propose that despite the heterogeneous genomic landscape of SCLC, the effects of mutations in patient tumors converge on a few critical pathways that drive malignancy. Specifically, alterations in epigenetic regulators lead to transcriptional dysregulation, pushing mutant cells toward a highly plastic state that makes them immune evasive and highly metastatic. This review will highlight studies showing how an imbalance of epigenetic regulators with opposing functions leads to the loss of immune recognition markers, effectively hiding tumor cells from the immune system. Additionally, we will discuss the role of epigenetic regulators in maintaining neuroendocrine features and how aberrant transcriptional control promotes epithelial-to-mesenchymal transition during tumor development. Although these pathways seem distinct, we emphasize that they often share common molecular drivers and mediators. Understanding the connection among frequently altered epigenetic regulators will provide valuable insights into the molecular mechanisms underlying SCLC development, potentially revealing preventive and therapeutic vulnerabilities for SCLC and other cancers with similar mutations.

Business Application of Convolutional Neural Networks for Apparel Classification Using Runway Image (합성곱 신경망의 비지니스 응용: 런웨이 이미지를 사용한 의류 분류를 중심으로)

  • Seo, Yian;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.1-19
    • /
    • 2018
  • Large amount of data is now available for research and business sectors to extract knowledge from it. This data can be in the form of unstructured data such as audio, text, and image data and can be analyzed by deep learning methodology. Deep learning is now widely used for various estimation, classification, and prediction problems. Especially, fashion business adopts deep learning techniques for apparel recognition, apparel search and retrieval engine, and automatic product recommendation. The core model of these applications is the image classification using Convolutional Neural Networks (CNN). CNN is made up of neurons which learn parameters such as weights while inputs come through and reach outputs. CNN has layer structure which is best suited for image classification as it is comprised of convolutional layer for generating feature maps, pooling layer for reducing the dimensionality of feature maps, and fully-connected layer for classifying the extracted features. However, most of the classification models have been trained using online product image, which is taken under controlled situation such as apparel image itself or professional model wearing apparel. This image may not be an effective way to train the classification model considering the situation when one might want to classify street fashion image or walking image, which is taken in uncontrolled situation and involves people's movement and unexpected pose. Therefore, we propose to train the model with runway apparel image dataset which captures mobility. This will allow the classification model to be trained with far more variable data and enhance the adaptation with diverse query image. To achieve both convergence and generalization of the model, we apply Transfer Learning on our training network. As Transfer Learning in CNN is composed of pre-training and fine-tuning stages, we divide the training step into two. First, we pre-train our architecture with large-scale dataset, ImageNet dataset, which consists of 1.2 million images with 1000 categories including animals, plants, activities, materials, instrumentations, scenes, and foods. We use GoogLeNet for our main architecture as it has achieved great accuracy with efficiency in ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Second, we fine-tune the network with our own runway image dataset. For the runway image dataset, we could not find any previously and publicly made dataset, so we collect the dataset from Google Image Search attaining 2426 images of 32 major fashion brands including Anna Molinari, Balenciaga, Balmain, Brioni, Burberry, Celine, Chanel, Chloe, Christian Dior, Cividini, Dolce and Gabbana, Emilio Pucci, Ermenegildo, Fendi, Giuliana Teso, Gucci, Issey Miyake, Kenzo, Leonard, Louis Vuitton, Marc Jacobs, Marni, Max Mara, Missoni, Moschino, Ralph Lauren, Roberto Cavalli, Sonia Rykiel, Stella McCartney, Valentino, Versace, and Yve Saint Laurent. We perform 10-folded experiments to consider the random generation of training data, and our proposed model has achieved accuracy of 67.2% on final test. Our research suggests several advantages over previous related studies as to our best knowledge, there haven't been any previous studies which trained the network for apparel image classification based on runway image dataset. We suggest the idea of training model with image capturing all the possible postures, which is denoted as mobility, by using our own runway apparel image dataset. Moreover, by applying Transfer Learning and using checkpoint and parameters provided by Tensorflow Slim, we could save time spent on training the classification model as taking 6 minutes per experiment to train the classifier. This model can be used in many business applications where the query image can be runway image, product image, or street fashion image. To be specific, runway query image can be used for mobile application service during fashion week to facilitate brand search, street style query image can be classified during fashion editorial task to classify and label the brand or style, and website query image can be processed by e-commerce multi-complex service providing item information or recommending similar item.

The Improvement Measures for the Establishment of Emergency Management System in Private Security (위험사회의 전개에 따른 민간경비 산업의 대응과제 - 위기관리를 중심으로)

  • Park, Dong-Kyun
    • Korean Security Journal
    • /
    • no.10
    • /
    • pp.103-125
    • /
    • 2005
  • Hazard are defined here as threat to life, well-being, material goods and environmental from the extremes of natural processes or technology. The challenges of natural and technology in increasing the exposure of people and property to risk pose a dilemma for any government seeking the fullest protection for its people and their property. As society progresses and as technology improves and becomes ever more intricate and far reaching, the human species is confronted with increasingly diverse and numerous catastrophic events. Not so infrequently, unfortunately, the impact of either a man-made or natural disaster is compounded by the fact that policy makers have neither prepared themselves or the public to respond appropriately to a disaster once the tragedy has struck. Many concerns have been raised for importance of emergency management after 1990's numerous urban disasters in Korea. Emergency management is the discipline and profession of applying science, technology, planning, and management to deal with extreme events that can injure or kill large numbers of people, cause extensive damage to property, and disrupt community life. When the primary function of private security is to protect lives and property of clients, emergency management should be included in the security service and many countermeasures should be carried out for that purpose. The purpose of this study is to establish ways and means needed to improve the private security emergency management system in Korea. This study is spilt into four chapters. Chapter I is the introduction part. Chapter II introduces the reader to a private security and emergency management theory, and Chapter III deals with the establishment of an effective emergency management system in Korea private security, Chapter IV is a conclusion. Policy makers and private security industry employers in Korea has not concerned with the importance of training and education by lack of recognition and has been passive about qualified guards. And the authorities supervising and the administrating the guards has not recognized the importance of private security and has neglected the training of the guards. In theses contexts, private security should develop and maintain a educational program of emergency management to meet their responsibilities to provide the protection and safety of the clients. Today's modern corporate security director, is, first of all, a competent, well-rounded business executive and, second, a 'service expert'. And, emergency management personnel in private security industry need continuous training.

  • PDF

Robust Eye Localization using Multi-Scale Gabor Feature Vectors (다중 해상도 가버 특징 벡터를 이용한 강인한 눈 검출)

  • Kim, Sang-Hoon;Jung, Sou-Hwan;Cho, Seong-Won;Chung, Sun-Tae
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.1
    • /
    • pp.25-36
    • /
    • 2008
  • Eye localization means localization of the center of the pupils, and is necessary for face recognition and related applications. Most of eye localization methods reported so far still need to be improved about robustness as well as precision for successful applications. In this paper, we propose a robust eye localization method using multi-scale Gabor feature vectors without big computational burden. The eye localization method using Gabor feature vectors is already employed in fuck as EBGM, but the method employed in EBGM is known not to be robust with respect to initial values, illumination, and pose, and may need extensive search range for achieving the required performance, which may cause big computational burden. The proposed method utilizes multi-scale approach. The proposed method first tries to localize eyes in the lower resolution face image by utilizing Gabor Jet similarity between Gabor feature vector at an estimated initial eye coordinates and the Gabor feature vectors in the eye model of the corresponding scale. Then the method localizes eyes in the next scale resolution face image in the same way but with initial eye points estimated from the eye coordinates localized in the lower resolution images. After repeating this process in the same way recursively, the proposed method funally localizes eyes in the original resolution face image. Also, the proposed method provides an effective illumination normalization to make the proposed multi-scale approach more robust to illumination, and additionally applies the illumination normalization technique in the preprocessing stage of the multi-scale approach so that the proposed method enhances the eye detection success rate. Experiment results verify that the proposed eye localization method improves the precision rate without causing big computational overhead compared to other eye localization methods reported in the previous researches and is robust to the variation of post: and illumination.

CNN-based Recommendation Model for Classifying HS Code (HS 코드 분류를 위한 CNN 기반의 추천 모델 개발)

  • Lee, Dongju;Kim, Gunwoo;Choi, Keunho
    • Management & Information Systems Review
    • /
    • v.39 no.3
    • /
    • pp.1-16
    • /
    • 2020
  • The current tariff return system requires tax officials to calculate tax amount by themselves and pay the tax amount on their own responsibility. In other words, in principle, the duty and responsibility of reporting payment system are imposed only on the taxee who is required to calculate and pay the tax accurately. In case the tax payment system fails to fulfill the duty and responsibility, the additional tax is imposed on the taxee by collecting the tax shortfall and imposing the tax deduction on For this reason, item classifications, together with tariff assessments, are the most difficult and could pose a significant risk to entities if they are misclassified. For this reason, import reports are consigned to customs officials, who are customs experts, while paying a substantial fee. The purpose of this study is to classify HS items to be reported upon import declaration and to indicate HS codes to be recorded on import declaration. HS items were classified using the attached image in the case of item classification based on the case of the classification of items by the Korea Customs Service for classification of HS items. For image classification, CNN was used as a deep learning algorithm commonly used for image recognition and Vgg16, Vgg19, ResNet50 and Inception-V3 models were used among CNN models. To improve classification accuracy, two datasets were created. Dataset1 selected five types with the most HS code images, and Dataset2 was tested by dividing them into five types with 87 Chapter, the most among HS code 2 units. The classification accuracy was highest when HS item classification was performed by learning with dual database2, the corresponding model was Inception-V3, and the ResNet50 had the lowest classification accuracy. The study identified the possibility of HS item classification based on the first item image registered in the item classification determination case, and the second point of this study is that HS item classification, which has not been attempted before, was attempted through the CNN model.