• Title/Summary/Keyword: pose recognition

Search Result 278, Processing Time 0.026 seconds

SHM data anomaly classification using machine learning strategies: A comparative study

  • Chou, Jau-Yu;Fu, Yuguang;Huang, Shieh-Kung;Chang, Chia-Ming
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.77-91
    • /
    • 2022
  • Various monitoring systems have been implemented in civil infrastructure to ensure structural safety and integrity. In long-term monitoring, these systems generate a large amount of data, where anomalies are not unusual and can pose unique challenges for structural health monitoring applications, such as system identification and damage detection. Therefore, developing efficient techniques is quite essential to recognize the anomalies in monitoring data. In this study, several machine learning techniques are explored and implemented to detect and classify various types of data anomalies. A field dataset, which consists of one month long acceleration data obtained from a long-span cable-stayed bridge in China, is employed to examine the machine learning techniques for automated data anomaly detection. These techniques include the statistic-based pattern recognition network, spectrogram-based convolutional neural network, image-based time history convolutional neural network, image-based time-frequency hybrid convolution neural network (GoogLeNet), and proposed ensemble neural network model. The ensemble model deliberately combines different machine learning models to enhance anomaly classification performance. The results show that all these techniques can successfully detect and classify six types of data anomalies (i.e., missing, minor, outlier, square, trend, drift). Moreover, both image-based time history convolutional neural network and GoogLeNet are further investigated for the capability of autonomous online anomaly classification and found to effectively classify anomalies with decent performance. As seen in comparison with accuracy, the proposed ensemble neural network model outperforms the other three machine learning techniques. This study also evaluates the proposed ensemble neural network model to a blind test dataset. As found in the results, this ensemble model is effective for data anomaly detection and applicable for the signal characteristics changing over time.

Study on 2.5D Map Building and Map Merging Method for Rescue Robot Navigation (재난 구조용 로봇의 자율주행을 위한 지도작성 및 2.5D 지도정합에 관한 연구)

  • Kim, Su Ho;Shim, Jae Hong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.114-130
    • /
    • 2022
  • The purpose of this study was to investigate the possibility of increasing the efficiency of disaster relief rescue operations through collaboration among multiple aerial and ground robots. The robots create 2.5D maps, which are merged into a 2.5D map. The 2.5D map can be handled by a low-specification controller of an aerial robot and is suitable for ground robot navigation. For localization of the aerial robot, a six-degree-of-freedom pose recognition method using VIO was applied. To build a 2.5D map, an image conversion technique was employed. In addition, to merge 2.5D maps, an image similarity calculation technique based on the features on a wall was used. Localization and navigation were performed using a ground robot to evaluate the reliability of the 2.5D map. As a result, it was possible to estimate the location with an average and standard error of less than 0.3 m for the place where the 2.5D map was normally built, and there were only four collisions for the obstacle with the smallest volume. Based on the 2.5D map building and map merging system for the aerial robot used in this study, it is expected that disaster response work efficiency can be improved by combining the advantages of heterogeneous robots.

Learning efficiency checking system by measuring human motion detection (사람의 움직임 감지를 측정한 학습 능률 확인 시스템)

  • Kim, Sukhyun;Lee, Jinsung;Yu, Eunsang;Park, Seon-u;Kim, Eung-Tae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.290-293
    • /
    • 2021
  • In this paper, we implement a learning efficiency verification system to inspire learning motivation and help improve concentration by detecting the situation of the user studying. To this aim, data on learning attitude and concentration are measured by extracting the movement of the user's face or body through a real-time camera. The Jetson board was used to implement the real-time embedded system, and a convolutional neural network (CNN) was implemented for image recognition. After detecting the feature part of the object using a CNN, motion detection is performed. The captured image is shown in a GUI written in PYQT5, and data is collected by sending push messages when each of the actions is obstructed. In addition, each function can be executed on the main screen made with the GUI, and functions such as a statistical graph that calculates the collected data, To do list, and white noise are performed. Through learning efficiency checking system, various functions including data collection and analysis of targets were provided to users.

  • PDF

Development of the self-diagnosis system for initial stage of developmental disability (발달장애 초기 자가 진단 시스템 개발)

  • WonSang Yu;Hyun-Woo Jeong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.367-372
    • /
    • 2024
  • Although developmental disabilities account for a relatively low number of the total number of disabilities, they are generally classified as severe disabilities considering the degree of disability. If these developmental disorders are discovered early, adaptability and early treatment efficiency can be improved, but most parents do not detect any signs from their children or miss the right time for treatment. In this paper, we conducted development of the developmental disorder diagnosis algorithm that can recognize hand-flapping, one of the early unusual behaviors of developmental disorders, for parents and early childhood care workers who cannot recognize signs of early developmental disorders based on specific behavioral characteristics as a pilot study. It was confirmed that the recognition area and fingers were accurately recognized, and the number of hand flapping was accurately counted. It is expected that research on algorithms that can diagnose various behavioral patterns will continue to be conducted and expanded all through algorithms advancement and expansion of functional performance using big data.

Inexpensive Visual Motion Data Glove for Human-Computer Interface Via Hand Gesture Recognition (손 동작 인식을 통한 인간 - 컴퓨터 인터페이스용 저가형 비주얼 모션 데이터 글러브)

  • Han, Young-Mo
    • The KIPS Transactions:PartB
    • /
    • v.16B no.5
    • /
    • pp.341-346
    • /
    • 2009
  • The motion data glove is a representative human-computer interaction tool that inputs human hand gestures to computers by measuring their motions. The motion data glove is essential equipment used for new computer technologiesincluding home automation, virtual reality, biometrics, motion capture. For its popular usage, this paper attempts to develop an inexpensive visual.type motion data glove that can be used without any special equipment. The proposed approach has the special feature; it can be developed as a low-cost one becauseof not using high-cost motion-sensing fibers that were used in the conventional approaches. That makes its easy production and popular use possible. This approach adopts a visual method that is obtained by improving conventional optic motion capture technology, instead of mechanical method using motion-sensing fibers. Compared to conventional visual methods, the proposed method has the following advantages and originalities Firstly, conventional visual methods use many cameras and equipments to reconstruct 3D pose with eliminating occlusions But the proposed method adopts a mono vision approachthat makes simple and low cost equipments possible. Secondly, conventional mono vision methods have difficulty in reconstructing 3D pose of occluded parts in images because they have weak points about occlusions. But the proposed approach can reconstruct occluded parts in images by using originally designed thin-bar-shaped optic indicators. Thirdly, many cases of conventional methods use nonlinear numerical computation image analysis algorithm, so they have inconvenience about their initialization and computation times. But the proposed method improves these inconveniences by using a closed-form image analysis algorithm that is obtained from original formulation. Fourthly, many cases of conventional closed-form algorithms use approximations in their formulations processes, so they have disadvantages of low accuracy and confined applications due to singularities. But the proposed method improves these disadvantages by original formulation techniques where a closed-form algorithm is derived by using exponential-form twist coordinates, instead of using approximations or local parameterizations such as Euler angels.

The application of Fourier transform near infrared (FT-NIR) spectroscopy in the wine industry of South Africa

  • Van Zyl, Anina;Manley, Marena;Wolf, Erhard E.H.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1257-1257
    • /
    • 2001
  • Fourier transform near infrared (FT-NIR) spectroscopy was used as a rapid method to measure the $^{o}Brix$ content and to discriminate between different must samples in terms of their fee amino nitrogen (FAN) values. FT-NIR spectroscopy was also used as a rapid method to discriminate between Chardonnay wine samples in terms of the status of the male-lactic fermentation (MLF). This was done by monitoring the conversion of malic to lactic acid and thereby determining whether MLF has started, is underway or has been completed followed by classification of the samples. Furthermore, FT-NIR spectroscopy was applied as a rapid method to discriminate between table wine samples in terms of the ethyl carbamate (EC) content. EC in wine can pose a health threat and need to be monitored by determining the EC content in relation to the regulatory limits set by the authorities. For each of the above mentioned parameters, $QUANT+^{TM}$ methods were built and calibrations derived and it was found that a very strong correlation existed in the sample set for the FT-NIR spectroscopic predictions of $^{o}Brix$ (r = 0.99, SECV = 0.306), but the correlations for the FAN (r = 0.61, SECV = 272.1), malic acid (r = 0.58, SECV = 1.06), lactic acid (r = 0.51, SECV = 1.14) and EC predictions (r = 0.47, SECV = 3.67) were not as good. Soft Independent Modeling by Class Analogy (SIMCA) diagnostics and validation was applied as a sophisticated discrimination method. The must samples could be classified in terms of their FAN values when SIMCA was applied, obtaining results with recognition rates exceeding 80%. When SIMCA diagnostics and validation were applied to determine the progress of conversion of malic to lactic acid and the EC content, again results with recognition rates exceeding 80% were obtained. The evaluation of the applicability of FT-NIR spectroscopy measurement of FAN, $^{o}Brix$ values, malic acid, lactic acid and EC content in must and wine shows considerable promise. FT-NIR spectroscopy has the potential to reduce the analytical times considerably in a range of measurements commonly used during the wine making process. Where conventional FT-NIR calibrations are not effective, SIMCA methods can be used as a discriminative method for rapid classification of samples. SIMCA can replace expensive, time-consuming, quantitative analytical methods, if not completely, at least to some extent, because in many processes it is only needed to know whether a specific cut off point has been reach or not or whether a sample belongs to a certain class or not.

  • PDF

A Motion-driven Rowing Game based on Teamwork of Multiple Players (다중 플레이어들의 팀워크에 기반한 동작-구동 조정 게임)

  • Kim, Hyejin;Shim, JaeHyuk;Lim, Seungchan;Goh, Youngnoh;Han, Daseong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.3
    • /
    • pp.73-81
    • /
    • 2018
  • In this paper, we present a motion-driven rowing simulation framework that allows multiple players to row a boat together by their harmonized movements. In the actual rowing game, it is crucial for the players to synchronize their rowing with respect to time and pose so as to accelerate the boat. Inspired by this interesting feature, we measure the motion similarity among multiple players in real time while they are doing rowing motions and use it to control the velocity of the boat in a virtual environment. We also employ game components such as catching an item which can accelerate or decelerate the boat depending on its type for a moment once it has been obtained by synchronized catching behaviors of the players. By these components, the players can be encouraged to more actively participate in the training for a good teamwork to produce harmonized rowing movements Our methods for the motion recognition for rowing and item catch require the tracking data only for the head and the both hands and are fast enough to facilitate the real-time performance. In order to enhance immersiveness of the virtual environment, we project the rowing simulation result on a wide curved screen.

3D Face Modeling based on 3D Morphable Shape Model (3D 변형가능 형상 모델 기반 3D 얼굴 모델링)

  • Jang, Yong-Suk;Kim, Boo-Gyoun;Cho, Seong-Won;Chung, Sun-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.212-227
    • /
    • 2008
  • Since 3D face can be rotated freely in 3D space and illumination effects can be modeled properly, 3D face modeling Is more precise and realistic in face pose, illumination, and expression than 2D face modeling. Thus, 3D modeling is necessitated much in face recognition, game, avatar, and etc. In this paper, we propose a 3D face modeling method based on 3D morphable shape modeling. The proposed 3D modeling method first constructs a 3D morphable shape model out of 3D face scan data obtained using a 3D scanner Next, the proposed method extracts and matches feature points of the face from 2D image sequence containing a face to be modeled, and then estimates 3D vertex coordinates of the feature points using a factorization based SfM technique. Then, the proposed method obtains a 3D shape model of the face to be modeled by fitting the 3D vertices to the constructed 3D morphable shape model. Also, the proposed method makes a cylindrical texture map using 2D face image sequence. Finally, the proposed method builds a 3D face model by rendering the 3D face shape model with the cylindrical texture map. Through building processes of 3D face model by the proposed method, it is shown that the proposed method is relatively easy, fast and precise than the previous 3D face model methods.

Towards Routine Clinical Use of Radial Stack-of-Stars 3D Gradient-Echo Sequences for Reducing Motion Sensitivity

  • Block, Kai Tobias;Chandarana, Hersh;Milla, Sarah;Bruno, Mary;Mulholland, Tom;Fatterpekar, Girish;Hagiwara, Mari;Grimm, Robert;Geppert, Christian;Kiefer, Berthold;Sodickson, Daniel K.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.2
    • /
    • pp.87-106
    • /
    • 2014
  • Purpose : To describe how a robust implementation of a radial 3D gradient-echo sequence with stack-of-stars sampling can be achieved, to review the imaging properties of radial acquisitions, and to share the experience from more than 5000 clinical patient scans. Materials and Methods: A radial stack-of-stars sequence was implemented and installed on 9 clinical MR systems operating at 1.5 and 3 Tesla. Protocols were designed for various applications in which motion artifacts frequently pose a problem with conventional Cartesian techniques. Radial scans were added to routine examinations without selection of specific patient cohorts. Results: Radial acquisitions show significantly lower sensitivity to motion and allow examinations during free breathing. Elimination of breath-holding reduces failure rates for non-compliant patients and enables imaging at higher resolution. Residual artifacts appear as streaks, which are easy to identify and rarely obscure diagnostic information. The improved robustness comes at the expense of longer scan durations, the requirement for fat suppression, and the nonexistence of a time-to-center value. Care needs to be taken during the configuration of receive coils. Conclusion: Routine clinical use of radial stack-of-stars sequences is feasible with current MR systems and may serve as substitute for conventional fat-suppressed T1-weighted protocols in applications where motion is likely to degrade the image quality.

Spatial and Vertical Distribution of Polycyclic Aromatic Hydrocarbons in Sediment of the Shipyard Area in Gohyeon Bay (고현만 조선소 주변해역 퇴적물내 다환방향족탄화수소의 시공간적 분포특성)

  • Park, Pan-Soo;Kim, Nam-Sook;Yim, Un-Hyuk;Shim, Won-Joon;Kim, Gi-Beum
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.2
    • /
    • pp.68-74
    • /
    • 2009
  • Polycyclic aromatic hydrocarbons (PAHs), one of ubiquitous organic pollutants in marine environments, are major toxic components of petroleum and are produced during the incomplete combustion of organic materials. As shipyards are located inside of natural or artificial semi-enclosed bay, even a relatively weak environmental disturbance by ship-building activity can cause severe damage to marine ecosystem in the bay. Many studies of pollution in shipyard area have been focused on the antifouling agent, like tributyltin. This study aimed to investigate the effect of ship-building activity on PAH contamination. Total PAHs concentration was higher nearby and inside shipyard area than outside, implying that shipyard could be one of major source area of PAH contamination to pose harmful effects to surrounding environments. Through PAH profile and source recognition index, the source of PAHs inputs in this area was estimated to originate from both petrogenic and pyrogenic origin. PAH levels showed a significant correlation with total butyltins, indicating that ship-building activity influenced PAH concentration and distribution. Vertical distribution of PAHs historically confirmed the correlation between shipbuilding activity and PAHs contamination.

  • PDF