Spatial and Vertical Distribution of Polycyclic Aromatic Hydrocarbons in Sediment of the Shipyard Area in Gohyeon Bay

고현만 조선소 주변해역 퇴적물내 다환방향족탄화수소의 시공간적 분포특성

  • Park, Pan-Soo (Korea Ocean Research & Development Institute) ;
  • Kim, Nam-Sook (Korea Ocean Research & Development Institute) ;
  • Yim, Un-Hyuk (Korea Ocean Research & Development Institute) ;
  • Shim, Won-Joon (Korea Ocean Research & Development Institute) ;
  • Kim, Gi-Beum (Department of Marine Environmental Engineering, Institute of Marine Industry, Gyeongsang National University)
  • 박판수 (한국해양연구원 남해연구소 해양환경위해성연구사업단) ;
  • 김남숙 (한국해양연구원 남해연구소 해양환경위해성연구사업단) ;
  • 임운혁 (한국해양연구원 남해연구소 해양환경위해성연구사업단) ;
  • 심원준 (한국해양연구원 남해연구소 해양환경위해성연구사업단) ;
  • 김기범 (국립경상대학교 해영환경공학과, 해양산업연구소)
  • Published : 2009.05.25

Abstract

Polycyclic aromatic hydrocarbons (PAHs), one of ubiquitous organic pollutants in marine environments, are major toxic components of petroleum and are produced during the incomplete combustion of organic materials. As shipyards are located inside of natural or artificial semi-enclosed bay, even a relatively weak environmental disturbance by ship-building activity can cause severe damage to marine ecosystem in the bay. Many studies of pollution in shipyard area have been focused on the antifouling agent, like tributyltin. This study aimed to investigate the effect of ship-building activity on PAH contamination. Total PAHs concentration was higher nearby and inside shipyard area than outside, implying that shipyard could be one of major source area of PAH contamination to pose harmful effects to surrounding environments. Through PAH profile and source recognition index, the source of PAHs inputs in this area was estimated to originate from both petrogenic and pyrogenic origin. PAH levels showed a significant correlation with total butyltins, indicating that ship-building activity influenced PAH concentration and distribution. Vertical distribution of PAHs historically confirmed the correlation between shipbuilding activity and PAHs contamination.

해양환경내 다양한 매체에서 검출되어지는 다환방향족탄화수소화합물(PAHs)은 유류의 주요 독성성분이며, 유기물질의 불완전연소 등에 의해서도 생성되어진다. 본 연구의 조사지역인 고현만은 조선산업활동이 활발한 반 폐쇄성 지역으로 소규모 환경교란에 의해서도 생태계는 심각한 피해를 받을 수 있다. 현재까지 조선소 지역에서의 연구는 주로 선박방오도료인 유기주석화합물과 같은 물질에 대해서만 집중되어졌다. 본 연구에서는 조선활동이 주변 퇴적물내 PAHs 농도 및 분포특성에 미치는 영향을 조사하였다. 본 연구를 통하여 주로 조선소 근처와 만 내에서 높은 PAHs 농도가 발견되어, 조선소가 PAHs의 주요 오염원이 될 수 있음을 확인하였다. 또한 유기주석화합물의 농도 및 조선건조량과 PAHs 농도가 좋은 상관관계를 나타내어, PAHs의 농도 및 분포는 이 지역에서의 조선활동과 무관하지 않음을 확인할 수 있었다. PAHs 개별화합물들의 조성비와 오염원 판별지수로부터 본 조사 지역에서의 PAHs 유입원은 유류 및 연소 경로 모두에 의한 것임을 알 수 있었다.

Keywords

References

  1. Baumard, P., Budzinski, H. and Garrigues, P., 1998, "Polycyclic aromatic hydrocarbons in sediments and mussels of the Western Mediter-ranean Sea", Environ. Toxicol. Chem., Vol. 17, 765-776. https://doi.org/10.1002/etc.5620170501
  2. Baumard, P., Budzinski, H., Garrigues, P., Narbonne, J.F., Burgeot, T., Michel, X. and Bellocq, J., 1999, "Polycyclic aromatic hydrocarbon(PAH) burden of mussels (Mytilus sp.) in different marine environments in relation with sediment PAH contamination, and bioavailability", Mar. Environ. Res., Vol. 47, 415-439. https://doi.org/10.1016/S0141-1136(98)00128-7
  3. Beatriz, P.C., Blanca, L., Eduardo, P. and Josefina, M., 2004, "Evaluation of PAH bioaccumulation and DNA damage in mussels (Mytilus gallorovincialis) exposed to spilled Prestige crude oil", Comp. Biochem. Physico. C-Toxicol. Pharmacol., Vol. 138, 453-460. https://doi.org/10.1016/j.cca.2004.08.001
  4. Chiu, S.W., Ho, K.M., Chan, S.S., So, O.M. and Lai, K.H., 2006, "Characterization of contamination in and toxicities of a shipyard area in Hong Kong", Environ. Pollut., Vol. 142, 512-520. https://doi.org/10.1016/j.envpol.2005.10.038
  5. Chung, H.H., leong, H.S. and Choi, S.W., 2006, "Distribution characteristics of Polycyclic aromatic hydrocarbons in the sediments of Kwangyang Bay in Korea", Korea Ind. Eng. Chem., Vol. 2, 210-216 (in Korean).
  6. Cooper, D.A., 2001, "Exhaust emissions from high speed passenger ferries", Atmos. Environ., Vol. 35, 4189-4200. https://doi.org/10.1016/S1352-2310(01)00192-3
  7. Kim, G.B., Maruya, K.A., Lee, R.F., Lee, J.H., Koh, C.H. and Tanabe, S., 1998, "Distribution and sources of polycyclic aromatic hydrocarbons in sediments from Kyeonggi Bay, Korea", Mar. Pollut. Bull., Vol. 38, 7-15.
  8. Koh C.H., Khim, J.S., Villeneuve, D.L., Kannan, K. and John, P.G., 2006, "Characterization of trace organic contaminants in marine sediment from Yeongil Bay, Korea: 1. Instrumental analyses", Environ. Pollut., Vol. 142, 39-47. https://doi.org/10.1016/j.envpol.2005.09.005
  9. Lake, J.L., Norwood, C., Dimock, C. and Bowen, R., 1979, "Origins of polycyclic aromatic hydrocarbons in estuarine sediments", Geochim. Cosmochim. Acta, Vol. 43, 1847-1854. https://doi.org/10.1016/0016-7037(79)90033-4
  10. Lee, K.H., Ichiba, M., Zhang, J., Tomokuni, K., Hong, M.H., Ho, J.K., Koh, S.B., Hong, R.C. and Lee, K.H., 2003, "Multiple biomarkers in painters in a shipyard in Korea", Mutat. Res., Vol. 540, 1, 89-98. https://doi.org/10.1016/S1383-5718(03)00173-6
  11. Lin, Y.C., Lee, W.J., Li, H.W., Chen, C.B., Fang, C.C. and Tsai, P.J., 2006, "Impact of using fishing boat fuel with high poly aromatic content on the emission of polycyclic aromatic hydrocarbons from the diesel engine", Atmos. Environ., Vol. 40, 1601-1609. https://doi.org/10.1016/j.atmosenv.2005.11.013
  12. Luca, G.D., Furesi, A., Leardi, R., Micer, G, Panzaelli, A., Piu, P.C. and Sanna, G., 2004, "Polycyclic aromatic hydrocarbons assessement in the sediments of the porto torres Harbor (Northern Sardinia Italy)", Mar. Chem., Vol. 86, 15-32. https://doi.org/10.1016/j.marchem.2003.11.001
  13. Mayes, M.A. and Barron, M.G., 1991, Aquatic toxicology and risk assessment. Bioaccumulation of organic micropollutants in different aquatic organisms: sublethal toxic effects on fish. Philadelphia, ASTM.
  14. McElroy, A.E., Farrington, J.W. and Teal, J.M., 1989, Bioavailability of PAH in the aquatic environment. In: Varanasi, U. (Ed.), metabolism of Polycyclic AromaticHydrocarbons in the aquatic environment. CRC press, Boca Raton, Florida. 1-39.
  15. Merrill, E.G. and Wade, T.L., 1985. Caronized coal products as a source of aromatic hydrocarbons to sediments from a highly industrialized estuary. Environ. Sci. Technol. Vol. 19, 597-603. https://doi.org/10.1021/es00137a003
  16. Peachey, R.B.J., 2003, "Tributyltin and polycyclic aromatic hydrocarbon levels in Mobile Bay, Alabama: A review", Mar. Pollut. Bull., Vol. 46, 1365-1371. https://doi.org/10.1016/S0025-326X(03)00373-4
  17. Shim, W.J., Hong, S.H., Yim, U.H., Kim, N.S. and Oh, J.R., 2002, "Horizontal and vertical distribution of butyltin compounds in sediments from shipyard in Korea", Arch. Environ. Contam. Toxicol. Vol. 43, 277-283. https://doi.org/10.1007/s00244-002-0156-0
  18. Shim, W.J., Oh, J.R., Kahng, S.H., Shim, J.H. and Lee, S.H., 1999, "Horizontal distribution of butyltins in surface sediments from an enclosed bay system, Korea", Environ. Pollut., Vol. 106, 351-357. https://doi.org/10.1016/S0269-7491(99)00109-8
  19. Shoelhammer, D.H., 2002, "Variability of suspended sediment concentration at tidal to annual timescales in San Francisco Bay, USA", Cont. Shelf Res., Vol. 22,1857-1866. https://doi.org/10.1016/S0278-4343(02)00042-0
  20. Sporstol, S., Gjos, N., Lichtenthaler, R.G, Gustavsen, K.O., Urdal, K., Oreld, F. and Skel J., 1983,"Source identification of aromatic hydrocarbons in sediments using GC/MS", Environ. Sci. Technol. Vol. 17, 282-286 https://doi.org/10.1021/es00111a008
  21. Tam, N.F.Y., Ke, L., Wang, X.H. and Wong, Y.S., 2001, "Contamination of polycyclic aromatic hydrocarbons in surface sediments of mangrove swamps", Environ. Pollut., Vol. 114, 255-263. https://doi.org/10.1016/S0269-7491(00)00212-8
  22. Wakeham, S.G., Schaffner, C. and Giger,W, 1980, "Polycyclic aromatic hydrocarbons in recent lake sediments. II. Compounds derived from biogenic precursors during early diagenesis", Geochim. Cosmochim. Acta, Vol. 44, 403-413. https://doi.org/10.1016/0016-7037(80)90040-X
  23. Wilfred, E.P., Terry, L.W, Frances, D.H. and Francis, P., 1999, "Accumulation of Butyltins in sediments and lipid tissues of the asian clam, Potamocorbula amurensis, near Mare island Naval shipyard, San Francisco Bay", Mar. Pollut. Bull., Vol. 38, 1005-1010. https://doi.org/10.1016/S0025-326X(99)00124-1
  24. Yang, H.H., Lee, W.J., Chen, S.J. and Lai, S.O., 1998, "PAR emission from various industrial stacks", J. Hazard. Mat., Vol. 60, 159-174. https://doi.org/10.1016/S0304-3894(98)00089-2
  25. Yim,V.H., Hong, S.H. and Shim, W.J., 2007, "Distributionand characteristics of PARs in sediments from the marine environment of Korea", Chemosphere. Vol. 68, 85-92. https://doi.org/10.1016/j.chemosphere.2006.12.032
  26. Yim, U.H., Hong, S.H., Shim, W.J., Oh, J.R. and Chang, M., 2005, "Spatio-temporal distribution and characteristics of PARs in sediments from Masan Bay, Korea", Mar. Pollut. Bull., Vol. 50, 319-326. https://doi.org/10.1016/j.marpolbul.2004.11.003
  27. 거제대학교 조선박물관 http://cybership.koje.ac.kr/index.html.
  28. 거제시시설관리공단 http://geojeimc.or.kr/.
  29. 삼성중공업 http://www.shi.samsung.co.kr.
  30. 한국해양연구원, 2005, 삼성중공업 거제조선소에 의한 어업피해 감정서. BSPG 38000-1753-3. pp.344-350.