• Title/Summary/Keyword: porphyromonas gingivalis

Search Result 273, Processing Time 0.027 seconds

Anti-Bacterial Effects of Basil Oil on Streptococcus mutans and Porphyromonas gingivalis (Streptococcus mutans와 Porphyromonas gingivalis에 대한 Basil Oil의 항균효과)

  • Yoon, Hyunseo;Park, Chungmu
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.6 no.3
    • /
    • pp.131-139
    • /
    • 2018
  • Purpose : The study objective was to assess the antibacterial activity of essential oil of basil against S. mutans and P. gingivalis and to explore its potential to prevent dental caries and peridontal disease. Method : Essential oil of basil, extracted using steam distillation, was diluted with triple distilled water and Tween 20 to generate samples at various concentration, that is 30%, 50%, and 70% (v/v). Strains of S. mutans and P. gingivalis were incubated in the medium under anaerobic condition. Broth microdilution susceptibility testing and plate incubation diffusion were utilized to determine the minimum inhibitory concentration (MIC) and to measure antibacterial activity, respectively. Result : An upsurge in antibacterial activity was seen to correlate with and increase in the concentration used for both bacterial strains, but was more significant with S. mutans. A statistically significant growth inhibition effect and reduction in the number of colonies was also observed with both strains dependent on the concentration used following 24 hours of incubation. Conclusion : Thus, the current study finding was that essential oil of basil was effective against dental caries and periodontal disease and could be used in dentifrice to help prevent oral disease.

Possibility of Involvement of Porphyromonas gingivalis in Coronary Heart Disease

  • Lee, Jin-Yong;Park, Byung-Lae;Yun, Hyun-Kyung;Park, Eun-Ah;Shin, Eun-Ah;Jue, Seong-Suk;Shin, Je-Won
    • The Journal of the Korean Society for Microbiology
    • /
    • v.35 no.3
    • /
    • pp.203-214
    • /
    • 2000
  • Porphyromonas gingivalis has been implicated in periodontal diseases. Accumulating evidence suggests that cardiovascular disease is the most prevalent medical problem in patients with periodontal diseases. In order to check the possibility that P. gingivalis is involved in coronary heart disease, the present study was performed to observe P. gingivalis adherence and invasion of human coronary artery endothelial cells (HCAEC) and production of cytokines and growth factors by HCAEC upon P. gingivalis infection. $^3H$-labeled P. gingivalis 381 was incubated with HCAEC for 90 min. The radioactivity of the washed HCAEC was a measure of the absorbed (adhering and invading) P. gingivalis. The absorption radioactivity of the HCAEC infected by P. gingivalis was determined to be 59.58% of the input bacterial cells. In contrast, the absorption radioactivity of the cells infected by S. gordonii Challis which was employed as a control was negligible (0.59%). DPG3, a P. gingivalis mutant defective of fimbriae, appeared to be impaired to some extent in capability of adherence/invasion as compared to that of the parental strain 381, showing 43.04% of the absorption radioactivity. The absorption radioactivity of the HCAEC infected by P. gingivalis 381 in the presence of excessive fimbriae at the concentrations of $50\;{\mu}g$ and $100\;{\mu}g/ml$ was 57.27 and 45.44%, respectively. Invasion of HCAEC by P. gingivalis 381 was observed by an antibiotic (metronidazole) protection assay and transmission electron microscopy (TEM). In the antibiotic protection assay, invasion by the bacterium was measured to be 0.73, 1.09, and 1.51% of the input bacterial cells after incubation for 30, 60, and 90 min, respectively. Invasion by DPG3 was shown to be 0.16% after 90-min incubation. In comparison of invasion efficiency at 90 min of the incubation, the invasion efficiency of DPG3 was 0.37% while that of its parental strain 381 was 2.54%. The immunoblot analysis revealed fimbriae of P. gingivalis did not interact with the surface of HCAEC. These results suggest that fimbriae are not the major contribution to the adherence of P. gingivalis to HCAEC but may be important in the invasion of HCAEC by the bacterium. The presence of cytochalasin D ($1\;{\mu}g/ml$) and staurosporine ($1\;{\mu}M$) reduced the invasion of HCAEC by P. gingivalis 381 by 78.86 and 53.76%, respectively, indicating that cytoskeletal rearrangement and protein kinase of HCAEC are essential for the invasion. Infection of P. gingivalis induced HCAEC to increase the production of TNF-${\alpha}$. by 60.6%. At 90 min of the incubation, the HCAEC infected with P. gingivalis cells was apparently atypical in the shape, showing loss of the nuclear membrane and subcellular organelles. The overall results suggest that P. gingivalis may cause coronary heart disease by adhering to and invading endothelial cells, and subsequently damaging the cells.

  • PDF

Prevalence of Porphyromonas gingivalis fimA genotypes in peri-implant sulcus of Koreans using new primer

  • Kim, Sung-Geun;Hong, Ji-Youn;Shin, Seung-Il;Moon, Ji-Hoi;Lee, Jin-Yong;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.46 no.1
    • /
    • pp.35-45
    • /
    • 2016
  • Purpose: Porphyromonas gingivalis fimA is a virulence factor associated with periodontal diseases, but its role in the pathogenesis of peri-implantitis remains unclear. We aimed to evaluate the relationship between the condition of peri-implant tissue and the distribution of P. gingivalis fimA genotypes in Koreans using a new primer. Methods: A total of 248 plaque samples were taken from the peri-implant sulci of 184 subjects. The control group consisted of sound implants with a peri-implant probing depth (PD) of 5 mm or less with no bleeding on probing (BOP). Test group I consisted of implants with a peri-implant PD of 5 mm or less and BOP, and test group II consisted of implants with a peri-implant PD of more than 5 mm and BOP. DNA was extracted from each sample and analyzed a using a polymerase chain reaction (PCR) with P. gingivalis -specific primers, followed by an additional PCR assay to differentiate the fimA genotypes in P. gingivalis-positive subjects. Results: The Prevalence of P. gingivalis in each group did not significantly differ (P>0.05). The most predominant fimA genotype in all groups was type II. The prevalence of type Ib fimA was significantly greater in test group II than in the control group (P<0.05). Conclusions: The fimA type Ib genotype of P. gingivalis was found to play a critical role in the destruction of peri-implant tissue, suggesting that it may be a distinct risk factor for periimplantitis.

GENE EXPRESSION OF HUMAN CORONARY ARTERY ENDOTHELIAL CELLS IN RESPONSE TO PORPHYROMONAS ENDODONTALIS INVASION (Porphyromonas endodontalis의 침투에 따른 혈관 내피세포의 유전자 발현)

  • Kong, Hee-Joung;Choi, Kyoung-Kyu;Park, Sang-Hyuk;Lee, Jin-Yong;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.6
    • /
    • pp.537-550
    • /
    • 2009
  • During the last two decades, there has been an increasing interest in the impact of oral health on atherosclerosis and subsequent cardiovascular disease (CVD). To date, some periodontal pathogens including Porphyromonas gingivalis (P. gingivalis) have been reported to be relevant to CVD. Porphyromonas endodontalis (P. endodontalis), which shares approximately 87% sequence homology with P. gingivalis, is mostly found within infected root canals. However, recent studies reveal that this pathogen also resides in the dental plaque or periodontal pocket in patients with periodontitis. It has been shown that P. endodontalis invades human coronary artery endothelial cells (HCAEC) and coronary artery smooth muscle cells (CASMC). To evaluate whether P. endodontalis can participate in the progression of atherosclerosis and CVD, we examined the changes in transcriptional gene expression profiles of HCAEC responding to invaion by P. endodontalis in this study. The following results were obtained. 1. Porphyromonas endodontalis was invasive of HCAEC. 2. According to the microarray analysis, there were 625 genes upregulated more than two-folds, while there were 154 genes downregulated by half. 3. Upregulated genes were relevant to inflammatory cytokines, apoptosis, coagulation and immune response. Enhanced expression of MMP-1 was also noticeable. 4. The transcription profiles of the 10 selected genes examined by real-time PCR agreed well with those observed in the microarray analysis. Thus, these results show that P. endodontalis presents the potential to trigger and augment atherosclerosis leading to CVD.

Identification of the Black-pigmented Prevotella Species and Porphyromonas Species from Infected Dental Root Canals (치아 근관 감염 검체에서 검은 색소 형성 Prevotella species와 Porphyromonas species의 동정)

  • Kim, Eun-Sook;Kim, Shin-Moo
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.38 no.1
    • /
    • pp.45-53
    • /
    • 2006
  • Anaerobic black-pigmented bacteria have been implicated in the endodontic infections. This group of microorganisms includes Porphyromonas endodontalis, P. gingivalis, Prevotella intermedia, and Prevotella nigrescens. The organisms display a wide variety of virulence factors that may be pertinent to acute endodontic infections. The aim of this study was to identify P. endodontalis, P. gingivalis, P. intermedia, and P. nigrescens by using the special potency disk test, filter paper spot test, 16S rRNA gene-directed PCR, and API 32A system. Microbial samples were collected from root canals of 33 intact teeth with necrotic pulp and apical periodontitis. Conventional laboratory methods were used to identify the strains of anaerobic black pigmented bacteria. Eighteen out of 33 samples were positive for the growth of black-pigmented bacrteria. Five colonies were cultured from each pure cultured colony from Brucella agar plates. Seventy seven colonies were positive for the growth of black-pigmented bacteria. Thirty three out of 77(42.8%) were identifed as P. nigrescens, 10 out of 77(13%)were P. gingivalis, 6 out of 77(7.8%) were P. endodontalis, 10 out of 77(13%) were P. intermedia. On the contrary the reference strains of P. nigrescens, experimental strains of P. nigrescens were susceptible to kanamycin in the special potency disk test. We concluded that after rapid presumptive identification methods, such as the special potency disk test and filter paper spot test were done, 16S rRNA gene PCR and API 32A test would be accurate detection methods for black-pigemented bacteria.

  • PDF

Induction of Signal Transduction Pathway Genes in Dendritic Cells by Lipopolysaccharides from Porphyromonas gingivalis and Escherichia coli

  • Jin, Ho-Kyeong;Lee, Young-Hwa;Jeong, So-Yeon;Na, Hee-Sam;Park, Hae-Ryoun;Chung, Jin
    • International Journal of Oral Biology
    • /
    • v.35 no.3
    • /
    • pp.113-119
    • /
    • 2010
  • Porphyromonas (P.) gingivalis lipopolysaccharide (Pg LPS) is the major pathogenic component of periodontal disease. In this study, we have attempted to determine the expression profiles of the signal transduction pathway genes induced by Pg LPS in comparison with Escherichia (E.) coli LPS (Ec LPS). DC2.4 cells were treated for two hours with $1\;{\mu}g/ml$ of Pg LPS or $0.5\;{\mu}g/ml$ of Ec LPS. The total RNA from these cells was then isolated and reverse-transcribed. Gene expression profiles were then analyzed with a signal transduction pathway finder GEArray Q series kit and significant changes in expression were confirmed by real-time PCR. The microarray results indicated that several genes, including Tnfrsf10b, Vcam1, Scyb9, Trim25, Klk6, and Stra6 were upregulated in the DC2.4 cells in response to Pg LPS treatment, but were downregulated or unaffected by Ec LPS. Realtime PCR revealed that the expression of Trim25, Scyb9 and Tnfrsf10b was increased over the untreated control. Notably, Trim25 and Tnfrsf10b were more strongly induced by Pg LPS than by Ec LPS. These results provide greater insight into the signal transduction pathways that are altered by P. gingivalis LPS.

Efficacy of an LED toothbrush on a Porphyromonas gingivalis biofilm on a sandblasted and acid-etched titanium surface: an in vitro study

  • Lee, Hae;Kim, Yong-Gun;Um, Heung-Sik;Chang, Beom-Seok;Lee, Si Young;Lee, Jae-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.3
    • /
    • pp.164-173
    • /
    • 2018
  • Purpose: The aim of this study was to evaluate the antimicrobial effect of a newly devised toothbrush with light-emitting diodes (LEDs) on Porphyromonas gingivalis attached to sandblasted and acid-etched titanium surfaces. Methods: The study included a control group, a commercial photodynamic therapy (PDT) group, and 3 test groups (B, BL, and BLE). The disks in the PDT group were placed in methylene blue and then irradiated with a diode laser. The B disks were only brushed, the BL disks were brushed with an LED toothbrush, and the BLE disks were placed into erythrosine and then brushed with an LED toothbrush. After the different treatments, bacteria were detached from the disks and spread on selective agar. The number of viable bacteria and percentage of bacterial reduction were determined from colony counts. Scanning electron microscopy was performed to visualize bacterial alterations. Results: The number of viable bacteria in the BLE group was significantly lower than that in the other groups (P<0.05). Scanning electron microscopy showed that bacterial cell walls were intact in the control and B groups, but changed after commercial PDT and LED exposure. Conclusions: The findings suggest that an LED toothbrush with erythrosine treatment was more effective than a commercial PDT kit in reducing the number of P. gingivalis cells attached to surface-modified titanium in vitro.

Antimicrobial effect of (-)-epigalocatechin on Fusobacterium nucleatum, Prevotella intermedia and Porphyromonas gingivalis ((-)-Epigalocatechin의 Fusobacterium nucleatum, Prevotella intermedia 및 Porphyromonas gingivalis에 대한 항균 효과)

  • Park, Jae-Yoon;Kim, Hwa-Sook;Kook, Joong-Ki
    • Journal of dental hygiene science
    • /
    • v.10 no.3
    • /
    • pp.161-165
    • /
    • 2010
  • The aim of this study was to investigate the antimicrobial effect of (-)-epigalocatechin on Fusobacterium nucleatum, Prevotella intermedia, and Porphyromonas gingivalis. To test the antimicrobial effect of (-)-epigalocatechin, the minimum inhibitory concentration (MIC) of against 4 strains of F. nucleatum, 2 strains of P. intermedia, and 2 strains of P. gingivalis was measured by broth dilution method. Time-kill curves were assessed for susceptible bacteria, testing $0{\times}MIC$ (control group), $0.5{\times}MIC$, $1{\times}MIC$, and $2{\times}MIC$ for (-)-epigalocatechin, by counting viable bacteria after 3, 90, 180, 360, 720, 1440 minutes. The MIC of (-)-epigalocatechin was 0.312-0.625, 0.625, and 0.625 mg/ml on the strains of F. nucleatum, P. intermedia, and P. gingivalis, respectively. Time-kill curves demonstrated (-)-epigalocatechin had bactericidal activity on P. intermedia ATCC $25611^T$, P. gingival is ATCC 53978, and F. nucleatum subsp. fusiforme ATCC $51190^T$. The results suggest that (-)-epigalocatechin can be useful in developing the oral hygiene product such as tooth past and gargling solution for the prevention of periodontal diseases.

Cholera Toxin B Subunit-Porphyromonas gingivalis Fimbrial Antigen Fusion Protein Production in Transgenic Potato

  • Lee, Jin-Yong;Kim, Mi-Young;Jeong, Dong-Keun;Yang, Moon-Sik;Kim, Tae-Geum
    • Journal of Plant Biotechnology
    • /
    • v.36 no.3
    • /
    • pp.268-274
    • /
    • 2009
  • Porphyromonas gingivalis, the gram-negative anaerobic oral bacterium, initiates periodontal disease by binding to saliva-coated oral surface. The cholera toxin B subunit (CTB) genetically linked to FimA1 (1-200 aa) or FimA2 (201-337 aa) of the P. gingivalis fimbrial antigen were introduced into Solanum tuberosum cells by Agrobacterium tumefaciens-mediated transformation method. The integration of CTB-FimA1 or CTB-FimA2 fusion genes were confirmed in the chromosome of transformed leaves by genomic DNA PCR amplification method. Synthesis and assembly of the CTB-FimA fusion proteins into oligomeric structures with pentamer size was detected in transformed tuber extracts by immunoblot analysis. The binding activities of CTB-FimA fusion proteins to intestinal epithelial cell membrane receptors were confirmed by GM1-ganglioside enzyme-linked immunosorbent assay (GM1-ELISA). The ELISA showed that the expression levels of the CTB-FimA1 or CTB-FimA2 fusion proteins were 0.0019, 0.002% of the total soluble protein in transgenic tuber tissues, respectively The synthesis of CTB-FimA monomers and their assembly into biologically active oligomers in transformed potato tuber tissues demonstrates the feasibility of using edible plants for the production of enterocyte targeted fimbrial antigens that could elicit mucosal immune responses.