• Title/Summary/Keyword: porous silicon

Search Result 341, Processing Time 0.027 seconds

Titanium Oxide Nanotube Arrays for Quartz Ctystal Microbalance (수정진동자 미세저울을 위한 티타늄산화물 나노튜브 어레이)

  • Mun, Kyu-Shik;Yang, Dae-Jin;Park, Hun;Choi, Won-Youl
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.372-372
    • /
    • 2007
  • Titanium oxide nanotube arrays were fabricated by the anodization of pure titanium thin film deposited at $500^{\circ}C$ on silicon substrates. The titania nanotubes were grown by anodization in nonaqueous-base electrolytes at different potentials between 5 V and 30 V. $TiO_2$ nanotube array with a small pore diameter of 40 nm and long titanium oxide layer of $4\;{\mu}m$ was obtained. The $TiO_2$ nanotube array was used as a porous electrode for quartz crystal microbalance (QCM). Nanoporous morphology of electrode will increase the sensitivity of microbalance.

  • PDF

Formation of electrode for carrier injection into nano-porous silicon diaphragm and its applications (나노 다공질 실리콘 다이어프램에 캐리어 주입을 위한 전극 형성 및 응용)

  • Pyo, Seong-Yeol;Kang, Chul-Goo;Kang, Moon-Sik;Hong, Suk-In;Min, Nam-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.77-78
    • /
    • 2002
  • 본 논문은 Pt/Ti 박막을 HF-ethanol 혼합 용액에 대한 매스킹 물질과 오믹 전극으로 사용하였다. 다공질 실리콘 층에 정공과 전자의 주입을 용이하게 하기 위해 이온 주입 공정으로 애노드(anode)와 캐소드(cathode) 전극을 실리콘 다이어프램에 구성하였다. 실리콘 다이어프램 영역에 정전압을 인가하여, 전기화학적 방법으로 관통된 PSi 층을 다이어프램 영역에 성장시켰다. 또한, 제작된 소자를 UV에 대한 광 특성을 고찰하였다.

  • PDF

Interfaces of Stacking $TiO_2$ Thin Layers Affected on Photocatalytic Activities

  • Ju, Dong-U;Bu, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.189.1-189.1
    • /
    • 2013
  • Titanium dioxide (TiO2) is a wide bandgap semiconductor possessing photochemical stability and thus widely used for photocatalysis. However, enhancing photocatalytic efficiency is still a challenging issue. In general, the efficiency is affected by physio-chemical properties such as crystalline phase, crystallinity, exposed crystal facets, crystallite size, porosity, and surface/bulk defects. Here we propose an alternative approach to enhance the efficiency by studying interfaces between thin TiO2 layers to be stacked; that is, the interfacial phenomena influencing on the formation of porous structures, controlling crystallite sizes and crystallinity. To do so, multi-layered TiO2 thin films were fabricated by using a sol-gel method. Specifically, a single TiO2 thin layer with a thickness range of 20~40 nm was deposited on a silicon wafer and annealed at $600^{\circ}C$. The processing step was repeated up to 6 times. The resulting structures were characterized by conventional electron microscopes, and followed by carrying out photocatalytic performances. The multi-layered TiO2 thin films with enhancing photocatalytic efficiency can be readily applied for bio- and gas sensing devices.

  • PDF

Three-dimensional and Multilayered Structure Prepared by Area of Platinum Transfer Printing (전사 인쇄에 의한 3차원 백금 다공성 다층구조)

  • Jeong, Seung-Jae;Choi, Yong Ho;Cho, Jeong Ho
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.113-116
    • /
    • 2019
  • A three-dimensional porous structure was fabricated by pattern transfer printing for applications of electrodes in gas sensors. To form replica patterns, solutions were mixed with acetone, toluene, heptane, and poly(methyl methacrylate). These replica patterns can also be formed on substrates such as polyimide, polydimethylsiloxane, and silicon. The wide range of line widths from 1 to $5{\mu}m$ was derived from the surface grating patterns of master substrates. The cross-bar pattern with 40 layers showed a thickness of 600 nm. The area of platinum transferred patterns with different line widths was enhanced to $20{\times}25mm$, which is applicable to various electrode patterns of gas sensors.

Vanadium-doped semi-insulating SiC single crystal growth by using porous graphite (다공성 흑연 소재를 이용한 바나듐 도핑된 반절연 SiC 단결정 성장의 특성 연구)

  • Lee, Dong-Hun;Kim, Hwang-Ju;Kim, Young-Gon;Choi, Su-Hun;Park, Mi-Seon;Jang, Yeon-Suk;Lee, Won-Jae;Jung, Kwang-Hee;Kim, Tae-Hee;Choi, Yi-Sik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.6
    • /
    • pp.215-219
    • /
    • 2016
  • Vanadium-doped SiC crystals have been grown by using a porous graphite inner crucible filled with vanadium carbide (VC) and by using a porous graphite plate and SiC + VC powders, respectively. Semi-insulating SiC crystals were grown onto the 6H-SiC seed crystals by PVT (Physical Vapor Transport) method. The grown crystals were indicated to be 6H-SiC polytype by XRD. As result of SIMS analysis, vanadium-rich precipitates were observed when the vanadium concentration was relatively higher than the maximum solubility of vanadium ($3-5{\times}10^{17}cm^{-3}$) in vanadium-doped SiC crystals, which resulted in degradation of crystal quality.

A study on surface modification of Ag powder for developing latent fingerprints (잠재지문 현출용 나노 은 분말의 표면개질에 대한 연구)

  • Kim, Man-Ki;Choi, Mi-Jung;Jeon, Chung-Hyun;Park, Sung-Woo
    • Analytical Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.216-223
    • /
    • 2010
  • In previous research, results on efficiency versus size and type of Ag particles showed similarity of detection efficiency comparing the particles of flake and spherical type with the gray particle on the market and in the case of nAg (rod, $0.9\;{\mu}m$) particle, relatively good results was given in the various evaluation methods for detection efficiency of latent fingerprint. However, oxidation was occurred when nAg particles laying on nature condition for a month and due to water absorption, detection efficiency was decreased. Therefore, with need to prevent oxidation and water absorption, more research is necessary. In this research, surface modification on nAg particles using silicon oil was conducted in various methods for complementing weakness of oxidation and water absorption. Then detection efficiency of nAg particles and surface modified nAg particles was evaluated by the number of feature points on the surface of non-porous materials (glass, plastic etc.) and degree of particle adhesion with ridges and contrast of detected fingerprint. Improvement of preventing oxidation and water absorbtion was given by surface modification using silicon oil (DC200, 0.5%) on the surface of non-porous materials.

CPW Phase Shifter and Shunt Stub with Air-Bridge Fabricated on Oxidized Porous Silicon(OPS) Substrate (산화된 다공질 실리콘 기판 위에 제작된 에어브리지를 가진 CPW Phase Shifter와 Shunt Stub)

  • Sim, Jun-Hwan;Park, Dong-Kook;Kang, In-Ho;Kwon, Jae-Woo;Park, Jeong-Yong;Lee, Jong-Hyun;Jeon, Joong-Sung;Ye, Byeong-Duck
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.9
    • /
    • pp.11-18
    • /
    • 2002
  • This paper presents a CPW phase shifter and shunt stub with air-bridge on a 10-${\mu}m$-thick oxidized porous silicon(OPS) substrate using surface micromachining. The line dimensions of the CPW phase shifter was designed with S-W-Sg = 100-30-400 ${\mu}m$. And the width and length of the air-bridge with "ㄷ“ shape were 100 ${\mu}m$ and 400-460-400 ${\mu}m$, respectively. In order to achieve low attenuation, stepped air-bridge CPW phase shift was proposed. The insertion loss of the stepped air-bridge CPW phase shift is more improved than that of no stepped air-bridge CPW phase shift. The measured phase characteristic of the fabricated CPW phase shifter is close to 180$^{\circ}$ over a very broad frequency range of 28 GHz. The measured working frequency of short-end series stub is 28.7 GHz and the return loss is - 20 dB. And the measured working frequency of short-end shunt stub is 28.9 GHz and the return loss is - 23 dB at midband. As a result, the pattering of stub in the center conductor of CPW lines can offer size reduction and lead to high density chip layouts.

Analysis of 6-Beam Accelerometer Using (111) Silicon Wafer by Finite Element Method ((111) 실리콘 웨이퍼를 이용한 6빔 가속도센서의 유한요소법 해석)

  • Sim, Jun-Hwan;Kim, Dong-Kwon;Seo, Chang-Taeg;Yu, In-Sik;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.346-355
    • /
    • 1997
  • In this paper, the analyses of the stress disturibution and frequency characteristics of silicon microstructures for an accelerometer were performed using the general purpose finite element simulation program, ANSYS. From the analyses, we determined the parameter values of a new 6-beam piezoresistive accelerometer applicable to the accelerometer's specification in airbag system of automobile. Then, the mass paddle radius, beam length, beam width, and beam thickness of the designed accelerometer were$500{\mu}m$, $350{\mu}m$, $100{\mu}m$, and $5{\mu}m$, respectively and two different seismic masses with 0.4 mg and 0.8 mg were defined on the same sensor structure. The designed 6- beam accelerometers were fabricated on the selectively diffused (111)-oriented $n/n^{+}/n$ silicon substrates and the characteristics of the fabricated accelerometers were investigated. Then, we used a micromachining technique using porous silicon etching method for the formation of the micromechanical structure of the accelerometer.

  • PDF

Si-Containing Nanostructures for Energy-Storage, Sub-10 nm Lithography, and Nonvolatile Memory Applications

  • Jeong, Yeon-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.108-109
    • /
    • 2012
  • This talk will begin with the demonstration of facile synthesis of silicon nanostructures using the magnesiothermic reduction on silica nanostructures prepared via self-assembly, which will be followed by the characterization results of their performance for energy storage. This talk will also report the fabrication and characterization of highly porous, stretchable, and conductive polymer nanocomposites embedded with carbon nanotubes (CNTs) for application in flexible lithium-ion batteries. It will be presented that the porous CNT-embedded PDMS nanocomposites are capable of good electrochemical performance with mechanical flexibility, suggesting these nanocomposites could be outstanding anode candidates for use in flexible lithium-ion batteries. Directed self-assembly (DSA) of block copolymers (BCPs) can generate uniform and periodic patterns within guiding templates, and has been one of the promising nanofabrication methodologies for resolving the resolution limit of optical lithography. BCP self-assembly processing is scalable and of low cost, and is well-suited for integration with existing semiconductor manufacturing techniques. This talk will introduce recent research results (of my research group) on the self-assembly of Si-containing block copolymers for the achievement of sub-10 nm resolution, fast pattern generation, transfer-printing capability onto nonplanar substrates, and device applications for nonvolatile memories. An extraordinarily facile nanofabrication approach that enables sub-10 nm resolutions through the synergic combination of nanotransfer printing (nTP) and DSA of block copolymers is also introduced. This simple printing method can be applied on oxides, metals, polymers, and non-planar substrates without pretreatments. This talk will also report the direct formation of ordered memristor nanostructures on metal and graphene electrodes by the self-assembly of Si-containing BCPs. This approach offers a practical pathway to fabricate high-density resistive memory devices without using high-cost lithography and pattern-transfer processes. Finally, this talk will present a novel approach that can relieve the power consumption issue of phase-change memories by incorporating a thin $SiO_x$ layer formed by BCP self-assembly, which locally blocks the contact between a heater electrode and a phase-change material and reduces the phase-change volume. The writing current decreases by 5 times (corresponding to a power reduction of 1/20) as the occupying area fraction of $SiO_x$ nanostructures varies.

  • PDF

Preparation of Porous Carbon by Chlorination of SiC (SiC의 염소화에 의한 다공성 탄소 입자 제조)

  • Park, Hoey Kyung;Park, Kyun Young;Kang, Tae Won;Jang, Hee Dong
    • Particle and aerosol research
    • /
    • v.8 no.4
    • /
    • pp.173-180
    • /
    • 2012
  • SiC particles, 8.3 ${\mu}m$ in volume average diameter, were chlorinated in an alumina tubular reactor, 2.4 cm in diameter and 32 cm in length, with reactor temperature varied from 100 to $1200^{\circ}C$. The flow rate of the gas admitted to the reactor was held constant at 300 cc/min, the mole fraction of chlorine in the gas at 0.1 and the reaction time at 4 h. The chlorination was negligibly small up to the temperature of $500^{\circ}C$. Thereafter, the degree of chlorination increased remarkably with increasing temperature until $900^{\circ}C$. As the temperature was increased further from 900 to $1200^{\circ}C$, the increments in chlorination degree were rather small. At $1200^{\circ}C$, the chlorination has nearly been completed. The surface area of the residual carbon varied with chlorination temperature in a manner similar to that with the variation of chlorination degree with temperature. The surface area at $1200^{\circ}C$ was 912 $m^{2}/g$. A simple model was developed to predict the conversion of a SiC under various conditions. A Langmuir-Hinshelwood type rate law with two rate constants was employed in the model. Assuming that the two rate constants, $k_{1}$ and $k_{2}$, can be expressed as $A_{1e}^{-E_{1}/RT}$ and $A_{2e}^{-E_{2}/RT}$, the four parameters, $A_{1}$, $E_{1}$, $A_{2}$, and $E_{2}$ were determined to be 32.0 m/min, 103,071 J/mol, 2.24 $m^{3}/mol$ and 39,526 J/mol, respectively, through regression to best fit experimental data.