• Title/Summary/Keyword: porous polymer

Search Result 450, Processing Time 0.025 seconds

Hierarchical porous carbon nanofibers via electrospinning

  • Raza, Aikifa;Wang, Jiaqi;Yang, Shan;Si, Yang;Ding, Bin
    • Carbon letters
    • /
    • v.15 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • Carbon nanofibers (CNFs) with diameters in the submicron and nanometer range exhibit high specific surface area, hierarchically porous structure, flexibility, and super strength which allow them to be used in the electrode materials of energy storage devices, and as hybrid-type filler in carbon fiber reinforced plastics and bone tissue scaffold. Unlike catalytic synthesis and other methods, electrospinning of various polymeric precursors followed by stabilization and carbonization has become a straightforward and convenient way to fabricate continuous CNFs. This paper is a comprehensive and brief review on the latest advances made in the development of electrospun CNFs with major focus on the promising applications accomplished by appropriately regulating the microstructural, mechanical, and electrical properties of as-spun CNFs. Additionally, the article describes the various strategies to make a variety of carbon CNFs for energy conversion and storage, catalysis, sensor, adsorption/separation, and biomedical applications. It is envisioned that electrospun CNFs will be the key materials of green science and technology through close collaborations with carbon fibers and carbon nanotubes.

Improvement in Cycle Characteristics using PVP Based Direct Carbon Coating During High-Rate Charge and Discharge of Li[Ni0.93Co0.07]O2 Nanofibers: Application for Lithium Secondary Batteries

  • Hae In Kim;Hyun Ju Jang;Thuy Thi Bich Tran;Jong-Tae Son;Eui Jeong Park
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.139-144
    • /
    • 2023
  • In this study, carbon-coated porous nanofibers were prepared via electrospinning and the performance of Li[Ni0.93Co0.07]O2 (NC) synthesized by electrospinning (E-NC) and co-precipitation (C-NC) was compared. E-NC had a discharge capacity of 206 mAh g-1 at 0.1C (17 mA/g), which is 10% higher than that of C-NC (189.2 mAh g-1). E-NC shows a high-rate performance of 118.32 mAh g-1 (61.7%) at 5C (850 mA/g), which is 50% higher than that of C-NC (78.22 mAh g-1 = 45.7%). Charge transfer of the carbon-coated porous nanofiber E-NC decreased by 35% compared to C-NC after 20 cycles as observed using electrochemical impedance spectroscopy. The results of this study show that the nanofiber structure with carbon coating shortens the Li-ion diffusion path, improves electrical conductivity, resulting in excellent rate performance.

Relationship between Mechanical Properties and Porosity of Porous Polymer Sheet Fabricated using Water-soluble Particles (수용성 입자를 이용한 다공성 폴리머 구조체의 공극률 향상과 기계적 물성과의 관계)

  • So, Sae-Rom;Park, Suk-Hee;Park, Sang-Hu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.16-23
    • /
    • 2018
  • A polymer porous sheet, which can be applied to diverse wearable devices, has some advantages such as light-weight, high flexibility, high elongation, and so many others. In order to fabricate a porous sheet, water-soluble particles like sugar were utilized frequently, and there has been great advances. However, with our best knowledge, there are not enough reports on the mechanical behavior of porous sheets having different porosity. So, in this work, we tried to find out the relationship between porosity and mechanical deformation of a porous sheet. The process parameters such as a particle size, sheet thickness and PDMS mixing ratio with curing agent were analyzed on the effect of increasing the porosity of a sheet. Also, mechanical deformation of a sheet was tested using a tensile experiment. Through the experimental results, we make a conclusion that a highly porous sheet with thin thickness has high flexibility, and it deformed nearly double elongation comparing to worst one among nine cases.

Preparation and Characterization of Porous Polymethylmethacrylate Film Showing Optical Reflectivity

  • Kim, Jihoon
    • Journal of Integrative Natural Science
    • /
    • v.6 no.2
    • /
    • pp.82-86
    • /
    • 2013
  • This paper describes a method for the preparation of porous polymethylmethacrylate showing optical reflectivity from the porous silicon template. A porous polymethylmethacrylate showing optical reflectivity was prepared by replicating porous silicon template which was obtained by applying a computer-generated periodic square current density and resulted in a mirror with high reflectivity in a specific narrow spectral region. A porous polymethylmethacrylate showing an excellent reflectivity was successfully obtained by dissolving the Porous silicon template from the porous polymethylmethacrylate composite film. A porous polymethylmethacrylate exhibited a sharp reflection resonance in the reflectivity spectrum. Surface image of the porous polymethylmethacrylate indicated that the surface of the porous polymethylmethacrylate film had a porous structure. These porous polymethylmethacrylate films in aqueous solutions were stable for several days without any degradation.

Characterization of Mechanical Property Change in Polymer Aerogels Depending on the Ligand Structure of Acrylate Monomer

  • Lee, Kyu-Yeon;Jung, Hae-Noo-Ree;Mahadik, D.B.;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.3
    • /
    • pp.15-20
    • /
    • 2016
  • In an effort to overcome the weakness of aerogel, polymer aerogels have been prepared by copolymerizing the different types of monomers through sol-gel process. Polymerizing the successive phase of a high internal phase emulsion, which has interconnected porous structure, porous polymer aerogel can be manufactured. In this paper, we use the styrene/divinylbenzene chain as a basic monomer structure, and additionally use 2-ethylhexyl methacrylate (2-EHMA) or 2-ethylhexyl acrylate (2-EHA) as monomers for distinguishing the visible mechanical properties of synthesized polymer aerogel. We can observe the different tendency of polymer aerogels by kinds of monomer or ratio. Flexibility and microstructure can be changed by the types of monomer. EHA polymer aerogel shows high flexibility and thin microstructure, and EHMA polymer aerogel shows high hardness and thick microstructure. EHA/EHMA polymer aerogel shows the intermediate nature between them. By utilizing the mechanical properties of three types of polymer aerogels to adequate situation or environment, polymer aerogels could be used as drug agent, ion exchange resin, oil filter and insulator, and so on.

Fabrication of Porous Al2O3-(m-ZrO2) Composites and Al2O3-(m-ZrO2)/PMMA Hybrid Composites by Infiltration Process

  • Lee, Byong-Taek;Quang, Do Van;Song, Ho-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.6 s.301
    • /
    • pp.291-296
    • /
    • 2007
  • Porous $Al_2O_3-(m-ZrO_2)$ composites were fabricated by pressureless sintering, using different volume percentages (40% - 60%) of poly methyl methacrylate (PMMA) powders as a pore-forming agent. The pore-forming agent was successfully removed, and the pore size and shape were well-controlled during the burn-out and sintering processes. The average pore size in the porous $Al_2O_3-(m-ZrO_2)$ bodies was about $200\;{\mu}m$ in diameter. The values of relative density, bending strength, hardness, and elastic modulus decreased as the PMMA content increased; i.e., in the porous body (sintered at $1500^{\circ}C$) using 55 vol % PMMA, their values were about 50.8%, 29.8 MPa, 266.4 Hv, and 6.4 GPa, respectively. To make the $Al_2O_3-(m-ZrO_2)$/polymer hybrid composites, a bioactive polymer, such as PMMA, was infiltrated into the porous $Al_2O_3-(m-ZrO_2)$ composites. After infiltration, most of the pores in the porous $Al_2O_3-(m-ZrO_2)$ composites, which were made using 60 vol % PMMA additions, were infiltrated with PMMA, and their values of relative density, bending strength, hardness, and elastic modulus remarkably increased.

Preparation of Porous Polymer Monoliths in Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 다공성 고분자 Monolith 제조)

  • Kang, Se Ran;Ju, Chang Sik
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.21-26
    • /
    • 2005
  • Experimental researches on the preparation of porous polymeric monoliths in supercritical carbon dioxide have been performed and the effects of monomer and polymerization parameters on the physical properties of the monolith prepared were examined. Polymerizations were carried out in the high pressure stainless steel reactor with sapphire window to show the phase change during the polymerization reaction, and continuous and dry porous monolithic polymer could be obtained. The specific surface area of monolithic polymer increased with monomer contents in reaction mixture and reaction pressure. The Rockwell hardness could be enhanced by the addition of co-monomer MMA in reaction mixtures.

Studies on the Durable Properties of Fiber Reinforced Porous Concrete Using Polymer (강섬유보강 폴리머 포러스콘크리트의 내구특성에 관한 연구)

  • Kim, Bong-Kyun;Park, Seong-Bum;Seo, Dae-Seuk;Lee, Byung-Jae;Kim, Jung-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.565-568
    • /
    • 2006
  • This study evaluates the physical mchanical properties, durability of porous concrete for pavement according to content of polymer and steel fiber to elicit the presentation of data and the way to enhance its function for the practical field application of porous concrete as a material of pavement. The results of the test indicate that in every condition, the void ratio and the coefficient of water permeability of porous concrete for pavement satisfy both the domestic standards and proposition values. Among the properties of strength, the compressive strength satisfies the standards in the specification of Korea National Housing Corporation as for every factor of mixture but in the case of the flexural strength, more than 0.6Vol.% of steel fiber satisfied the Japan Concrete Institute proposition values. The case when 0.6Vol.% of steel fiber and 10Wt.% of polymer are used at the same time shows that the loss rate of mass by Cantabro test became 36.7% better and freeze-thaw resistance became 33% better.

  • PDF

Effect of Collector Temperature on the Porous Structure of Electrospun Fibers

  • Kim Chi Hun;Jung Yoon Ho;Kim Hak Yong;Lee Douk Rae;Dharmaraj Nallasamy;Choi Kyung Eun
    • Macromolecular Research
    • /
    • v.14 no.1
    • /
    • pp.59-65
    • /
    • 2006
  • We report a new approach to fabricate electrospun polymer nonwoven mats with porous surface morphology by varying the collector temperature during electrospinning. Polymers such as poly(L-lactide) (PLLA), polystyrene (PS), and poly(vinyl acetate) (PVAc) were dissolved in volatile solvents, namely methylene chloride (Me) and tetrahydrofuran (THF), and subjected to electrospinning. The temperature of the collector in the electrospinning device was varied by a heating system. The resulting nonwoven mats were characterized by using scanning electron microscopy (SEM), field emission SEM (FESEM), and atomic force microscopy (AFM). We observed that the surface morphology, porous structure, and the properties such as pore size, depth, shape, and distribution of the nonwoven mats were greatly influenced by the collector temperature.