• 제목/요약/키워드: porosity model

검색결과 503건 처리시간 0.026초

경사형 타공판을 이용한 소파장치 개발 (Development of a Wave Absorbing System Using an Inclined Punching Plate)

  • 조일형;홍석원
    • 한국해양공학회지
    • /
    • 제18권1호
    • /
    • pp.1-6
    • /
    • 2004
  • In this paper, the performance of a wave absorbing system using an inclined punching plate, was investigated. Using the multi-domain boundary element method (BEM), the reflection coefficients of an inclined punching plate were tested with various design parameters, such as inclined angle, porosity, and wave frequencies. To confirm the numerical solutions, the systematic model test was conducted at 2-D tank and square tank. The numerical results were in good agreement with the experimental results within the entire frequency range. It was found that an inclined punching plate had an excellent wave absorbing efficiency, compared to a horizontal one. Also, the optimal range of an inclined angle had an excellent wave absorbing efficiency, compared to a horizontal one the optimal range of the inclined angle is 10°<β<20°. The developed wave absorber was installed at KRISO's square basin, and is working effectively for various model tests.

모바일용 연료전지의 성능해석에 관한 연구 (A Study on the Performance Analysis of Mobile Fuel Cell)

  • 김광수;최종필;정창렬;장재혁;전병희;김병희
    • 한국정밀공학회지
    • /
    • 제25권1호
    • /
    • pp.115-121
    • /
    • 2008
  • In this paper, a three-dimensional computational fluid dynamic model of a proton exchange membrane fuel cell(PEMFC) with serpentine flow channel is presented. A steady state, single phase and isothermal numerical model has been established to investigate the influence of the GDL (Gas Diffusion Layer) parameters. The GDL is made of a porous material such as carbon cloth, carbon paper or metal wire mesh. For the simplicity, the GDL is modeled as a block of material having numerous pathways through which gaseous reactants and liquid water can pass. The porosity, permeability and thickness of the GDL, which are employed in the model parameters significantly affect the PEMFC performance at the high current region.

Nonlocal strain gradient model for thermal stability of FG nanoplates integrated with piezoelectric layers

  • Karami, Behrouz;Shahsavari, Davood
    • Smart Structures and Systems
    • /
    • 제23권3호
    • /
    • pp.215-225
    • /
    • 2019
  • In the present paper, the nonlocal strain gradient refined model is used to study the thermal stability of sandwich nanoplates integrated with piezoelectric layers for the first time. The influence of Kerr elastic foundation is also studied. The present model incorporates two small-scale coefficients to examine the size-dependent thermal stability response. Elastic properties of nanoplate made of functionally graded materials (FGMs) are supposed to vary through the thickness direction and are estimated employing a modified power-law rule in which the porosity with even type of distribution is approximated. The governing differential equations of embedded sandwich piezoelectric porous nanoplates under hygrothermal loading are derived through Hamilton's principle where the Galerkin method is applied to solve the stability problem of the nanoplates with simply-supported edges. It is indicated that the thermal stability characteristics of the porous nanoplates are obviously influenced by the porosity volume fraction and material variation, nonlocal parameter, strain gradient parameter, geometry of the nanoplate, external voltage, temperature and humidity variations, and elastic foundation parameters.

Effective thermal conductivity model of porous polycrystalline UO2: A computational approach

  • Yoon, Bohyun;Chang, Kunok
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1541-1548
    • /
    • 2022
  • The thermal conductivity of uranium oxide (UO2) containing pores and grain boundaries is investigated using continuum-level simulations based on the finite-difference method in two and three dimensions. Steady-state heat conduction is solved on microstructures generated from the phase-field model of the porous polycrystal to calculate the effective thermal conductivity of the domain. The effects of porosity, pore size, and grain size on the effective thermal conductivity of UO2 are quantified. Using simulation results, a new empirical model is developed to predict the effective thermal conductivity of porous polycrystalline UO2 fuel as a function of porosity and grain size.

Free vibrational behavior of bi-directional perfect and imperfect axially graded cylindrical shell panel under thermal environment

  • Pankaj S. Ghatage;P. Edwin Sudhagar
    • Structural Engineering and Mechanics
    • /
    • 제85권1호
    • /
    • pp.135-145
    • /
    • 2023
  • This study presents the free vibrational responses of bi-directional axially graded cylindrical shell panels using 3D graded finite element approximation under a temperature field. The cylindrical shell panel is graded in two directions and made of metal-ceramic materials. To extract material properties, the Voigt model is combined with a Power-law material distribution. Convergence and validation studies are performed on the developed computational model to ensure its accuracy and effectiveness. Furthermore, a parametric study is performed to evaluate the developed model, which demonstrates that geometrical parameters, imperfect materials (porosity), support conditions, and surface temperature all have a significant impact on the free vibration responses of a bi-directional axially graded cylindrical shell panel in a thermal environment.

다공성 방풍펜스 후방에 놓인 삼각프리즘의 표면압력특성에 관한 풍공학적 연구 (Wind Engineering Study on the Surface-Pressure Characteristic of a Triangular Prism Located Behind a Porous Fence)

  • 박철우;이상준
    • 대한기계학회논문집B
    • /
    • 제21권11호
    • /
    • pp.1496-1508
    • /
    • 1997
  • The effects of porous wind fence on the pressure characteristics around a 2-dimensional prism model of triangular cross-section were investigated experimentally. The fence and prism model were embedded in a neutral atmospheric surface boundary layer over the city suburb. In this study, various fences of different porosity, back fence, inclination angle of prism and location of additional back prisms were tested to investigate their effects on the pressure and wall shear stress of the prism surface. The fence and prism had the same height of 40 mm and Reynolds number based on the model height was Re=3.9*10$^{4}$. The porous fence with porosity 40% was found to be the best wind fence for decreasing the mean and pressure fluctuations on the prism surface. By installing the fence of porosity 40%, the wall shear stress on the windward surface of prism was largely decreased up to 1/3 of that without the fence. This indicates that the porous fence is most effective to abate the wind erosion. Pressure fluctuations on the model surface were decreased more than half when a back fence was located behind the prism in addition to the front fence. With locating several back prisms and decreasing the inclination angle of triangular prism, the pressure fluctuations on the model surface were increased on the contrary.

해면질골에서 다공율, 주파수 및 전파각에 대한 초음파 위상속도의 의존성 연구 (Study on the Dependence of Ultrasonic Phase Velocity on Porosity, Frequency and Propagation Angle in Cancellous Bone)

  • 이강일;김용태;최민주
    • 비파괴검사학회지
    • /
    • 제28권2호
    • /
    • pp.112-118
    • /
    • 2008
  • 본 논문에서는 유체에 포화된 다공성 매질에 적용되는 Biot 모델 및 modified Biot-Attenborough (MBA) 모델을 이용하여 해면질골에서 다공율 및 주파수에 대한 초음파 위상속도의 의존성을 예측하였다. 또한 선행 연구자들에 의하여 사람 및 소의 해면질골에서 측정된 값과 비교하였다. 해면질골에서 위상속도는 다공율 및 주파수가 증가함에 따라 감소하는 것을 알 수 있었다. 또한 전파각 효과를 포함하도록 수정된 Biot 모델 및 MBA 모델뿐만 아니라 Schoenberg 모델을 이용하여 해면질골에서 전파각에 대한 위상속도의 의존성을 예측하였다. 본 논문에서 이용된 이론적인 모델들은 초음파와 해면질골의 상호작용에 대한 물리학적인 이해를 증진시키는데 기여할 뿐만 아니라 골다공증을 진단하기 위하여 유용하게 이용될 수 있을 것으로 기대된다.

투과성 내부재가 설치된 사각형 탱크내의 슬로싱 현상에 대한 실험적 연구 (Experimental Study on Sloshing in Rectangular Tank with Vertical Porous Baffle)

  • 현종우;조일형
    • 한국해양공학회지
    • /
    • 제29권4호
    • /
    • pp.291-299
    • /
    • 2015
  • A variety of inner baffles are often installed to reduce liquid sloshing and prevent tank damage. In particular, a porous baffle has a distinct advantage in reducing sloshing by changing the natural periods and dissipating the wave energy in a tank. In model tests, porous baffles with five different porosities were installed vertically in a liquid tank under sway motion. The free surface elevations and pressures were measured using an image processing technique and a pressure gage for various combinations of baffle's porosity and submergence depth, and tank's amplitude and period. The experimental results were in good agreement with the analytic solutions (Cho, 2015), with the exception of a quantitative difference at resonant periods. The experimental results showed that the sloshing characteristics in a tank were closely dependent on both the porosity and submergence depth of the baffle, and the optimal porosity existed near P = 0.1275.

투과성 격벽을 이용한 수평 운동하는 사각형 탱크내의 슬로싱 감쇠 (Sloshing Damping in a Swaying Rectangular Tank Using a Porous Bulkhead)

  • 조일형
    • 한국해양공학회지
    • /
    • 제32권4호
    • /
    • pp.228-236
    • /
    • 2018
  • The performance of a porous swash bulkhead for the reduction of the resonant liquid motion in a swaying rectangular tank was investigated based on the assumption of linear potential theory. The Galerkin method (Porter and Evans, 1995) was used to solve the potential flow model by adding a viscous frictional damping term to the free-surface condition. By comparing the experimental results and the analytical solutions, we verified that the frictional damping coefficient was 0.4. Darcy's law was used to consider the energy dissipation at a porous bulkhead. The tool that was developed with a built-in frictional damping coefficient of 0.4 was confirmed by small-scale experiments. Using this tool, the free-surface elevation, hydrodynamic force (added mass, damping coefficient) on a wall, and the horizontal load on a bulkhead were assessed for various combinations of porosity and submergence depth. It was found that the vertical porous bulkhead can suppress sloshing motions significantly when properly designed and by selecting the appropriate porosity(${\approx}0.1$) and submergence depth.