Browse > Article
http://dx.doi.org/10.1016/j.net.2021.10.040

Effective thermal conductivity model of porous polycrystalline UO2: A computational approach  

Yoon, Bohyun (Department of Nuclear Engineering, Kyung Hee University)
Chang, Kunok (Department of Nuclear Engineering, Kyung Hee University)
Publication Information
Nuclear Engineering and Technology / v.54, no.5, 2022 , pp. 1541-1548 More about this Journal
Abstract
The thermal conductivity of uranium oxide (UO2) containing pores and grain boundaries is investigated using continuum-level simulations based on the finite-difference method in two and three dimensions. Steady-state heat conduction is solved on microstructures generated from the phase-field model of the porous polycrystal to calculate the effective thermal conductivity of the domain. The effects of porosity, pore size, and grain size on the effective thermal conductivity of UO2 are quantified. Using simulation results, a new empirical model is developed to predict the effective thermal conductivity of porous polycrystalline UO2 fuel as a function of porosity and grain size.
Keywords
$UO_2$; Effective thermal conductivity; Computer simulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Dagum, R. Menon, OpenMP: an industry standard API for shared-memory programming, IEEE Comput. Sci. Eng. 5 (1998) 46-55.   DOI
2 Kenneth Geelhood, Walter G. Luscher, Patrick A. Raynaud, Ian E. Porter, FRAPCON-4.0: A Computer Code for the Calculation of Steady-State Thermal-Mechanical Behavior of Oxide Fuel Rods for High Burn-Up, vol. 1, Pacific Northwest National Laboratory-19418, Richland, Washington, 2015.
3 Michael R. Tonks, Xiang-Yang Liu, David Andersson, Danielle Perez, Aleksandr Chernatynskiy, Giovanni Pastore, Christopher R. Stanek, Richard Williamson, Development of a multiscale thermal conductivity model for fission gas in UO2, J. Nucl. Mater. 469 (2016) 89-98.   DOI
4 Weiming Chen, Michael W.D. Cooper, Ziqi Xiao, David A. Andersson, Xian-Ming Bai, Effect of Xe bubble size and pressure on the thermal conductivity of UO2-a molecular dynamics study, J. Mater. Res. 34 (2019) 2295-2305.   DOI
5 P.G. Lucuta, Hj Matzke, I.J. Hastings, A pragmatic approach to modelling thermal conductivity of irradiated UO2 fuel: review and recommendations, J. Nucl. Mater. 232 (1996) 166-180.   DOI
6 D. Fan, L.-Q. Chen, Computer simulation of grain growth using a continuum field model, Acta Mater. 45 (1997) 611-622.   DOI
7 Linyun Liang, Yeon Soo Kim, Zhi-Gang Mei, Larry K. Aagesen, Abdellatif M. Yacout, Fission gas bubbles and recrystallization-induced degradation of the effective thermal conductivity in U-7Mo fuels, J. Nucl. Mater. 511 (2018) 438-445.   DOI
8 S.K. Rhee, Porosity-thermal conductivity correlations for ceramic materials, Mater. Sci. Eng. 20 (1975) 89-93.   DOI
9 Srikanth Vedantam, B.S.V. Patnaik, Efficient numerical algorithm for multiphase field simulations, Phys. Rev. 73 (2006), 016703.
10 Ho-Soon Yang, G.-R. Bai, L.J. Thompson, Jeffrey A. Eastman, Interfacial thermal resistance in nanocrystalline yttria-stabilized zirconia, Acta Mater. 50 (2002) 2309-2317.   DOI
11 Nele Moelans, Bart Blanpain, Patrick Wollants, A phase field model for the simulation of grain growth in materials containing finely dispersed incoherent second-phase particles, Acta Mater. 53 (2005) 1771-1781.   DOI
12 D.R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements, U.S. Energy Research and Development Administration, Dept. of energy, National technical information service, springfield, VA, 1976.
13 C.-W. Lee, Aleksandr Chernatynskiy, Priyank Shukla, R.E. Stoller, Susan B. Sinnott, Simon Robert Phillpot, Effect of pores and He bubbles on the thermal transport properties of UO2 by molecular dynamics simulation, J. Nucl. Mater. 456 (2015) 253-259.   DOI
14 Paul C. Millett, Michael R. Tonks, Meso-scale modeling of the influence of intergranular gas bubbles on effective thermal conductivity, J. Nucl. Mater. 412 (2011) 281-286.   DOI
15 Paul C. Millett, Michael R. Tonks, K. Chockalingam, Yongfeng Zhang, S.B. Biner, Three dimensional calculations of the effective Kapitza resistance of UO2 grain boundaries containing intergranular bubbles, J. Nucl. Mater. 439 (2013) 117-122.   DOI
16 Bohyun Yoon, Kunok Chang, Effect of the pore radius on the effective conductivity of UO2 in 2D and 3D: a computational approach, Results in physics 19 (2020) 103440.   DOI
17 G. Ondracek, B. Schulz, The porosity dependence of the thermal conductivity for nuclear fuels, J. Nucl. Mater. 46 (1973) 253-258.   DOI
18 Long-Qing Chen, Wei Yang, Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: the grain-growth kinetics, Phys. Rev. B 50 (1994) 15752.   DOI
19 Tianyi Chen, Di Chen, Bulent H. Sencer, Lin Shao, Molecular dynamics simulations of grain boundary thermal resistance in UO2, J. Nucl. Mater. 452 (2014) 364-369.   DOI
20 Paul C. Millett, Dieter Wolf, Tapan Desai, Srujan Rokkam, Anter El-Azab, Phase-field simulation of thermal conductivity in porous polycrystalline microstructures, J. Appl. Phys. 104 (2008), 033512.   DOI
21 J.H. Harding, D.G. Martin, A recommendation for the thermal conductivity of UO2, J. Nucl. Mater. 166 (1989) 223-226.   DOI