• Title/Summary/Keyword: poroelasticity

Search Result 15, Processing Time 0.021 seconds

Strain Rate Dependent Poroelastic Behavior of Bovine Vertebral Trabecular Bone

  • Hong, Jung-Hwa;Mum, Mu-Seong;Lim, Tae-Hong
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.1032-1040
    • /
    • 2001
  • It is widely accepted that the pressure variation of interstitial fluid is one of the most important factors in bone physiology. In order to understand the role of interstitial fluid on porous bony structure, a consideration for the biomechanical interactions between fluid and solid constituents within bone is required. In this study, a poroelastic theory was applied to investigate the elastic behavior of calf vertebral trabecular bone composed of the porous solid trabeculae and the viscous bone marrow. The poroelastic behavior of trabecular bone in a uniaxial stress condition was simulated using a commercial finite difference analysis software (FLAC, Itasca Consulting Group, USA), and tested for 5 different strain rates, i.e., 0.001, 0.01, 0.1, and 10 per second. The material properties of the calf vertebral trabecular bone were utilized from the previous experimental study. Two asymptotic poroelastic responses, the drained and undrained deformations, were predicted. From the predicted results for the simulated five strain rates, it was found that the pore pressure generation has a linearly increasing behavior when the strain rate is the highest at 10 per second, otherwise it showed a nonlinear behavior. The pore pressure generation with respect to the strain was found to be increased as the strain rate increased. The elastic moduli predicted at each strain were 208.3, 212.2, 337.6, 593.1, and 602.2 MPa, respectively. Based on the results of the present study, it was suggested that the calf vertebral trabecular bone could be modeled as a poroelastic material and its strain rate dependent material behavior could be predicted.

  • PDF

Three-Dimensional Poroelastic and Failure Analysis of Composites Using Multislice Finite Element Models (분층형 유한요소 모델을 이용한 복합재료의 삼차원 기공 탄성 및 파손 해석)

  • Yang, Dae Gyu;Lim, Soyoung;Shin, Eui Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.2
    • /
    • pp.92-98
    • /
    • 2017
  • Porosity in polymer matrix composites generated during pyrolysis process affect the thermomechanical behavior of the composites. In this paper, multislice finite element models for the porous composite materials are developed, and poroelastic and failure analysis for these models are performed. In order to investigate the three-dimensional effects, finite element meshes are modeled considering different porosity(up to 0.5) and the number of slices (up to five). As a result, effective Young's moduli and poroelastic parameters exhibit the maximum differences of 74.0% and 442.1% with respect to porosity respectively, and 98.7% and 37.2% with respect to the number of slices. First and last failure strengths are decreased 88.2% and 90.0% with respect to porosity respectively, and 53.8% and 171.8% with respect to the number of slices.

An Experimental Study on Measurement Method for Grain Bulk Modulus of Sandstone (사암의 입자 체적계수 측정 방법에 대한 실험적 연구)

  • Min-Jun Kim;Eui-Seob Park;Chan Park;Junhyung Choi
    • Tunnel and Underground Space
    • /
    • v.33 no.2
    • /
    • pp.71-82
    • /
    • 2023
  • This study presents a direct measurement method for grain bulk modulus, which is important hydraulic-mechanical properties of rock, and conducts the experiment to investigate the grain bulk modulus of sandstone. In addition, the factors affecting the grain bulk modulus were investigated, comparing volumetric characteristics of rocks with different properties. As a result of the experiment, it was confirmed that the theoretically estimated bulk modulus is overestimated than the direct measured one. The possibility of the difference was analyzed, discussing the existence of non-connected pore space due to particle structure of the rock. Finally, the experimental results showed that the direct measurement suggested in this study can reliably predict the grain bulk modulus of sandstone.

A Fully Coupled Hydrogeomechanical Numerical Analysis of Rainfall Impacts on Groundwater Flow in Slopes and Slope Stability (사면 내의 지하수 유동과 사면의 안정성에 대한 강수 영향의 완전 연동된 수리지질역학적 수치 해석)

  • 김준모
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.6
    • /
    • pp.5-16
    • /
    • 2002
  • A hydrogeomechanical numerical model is presented to evaluate rainfall impacts on groundwater flow in slopes and slope stability. This numerical model is developed based on the fully coupled poroelastic governing equations for groundwater flow in deforming variably saturated geologic media and the Galerkin finite element method. A series of numerical experiments using the model developed are then applied to an unsaturated slope under various rainfall rates. The numerical simulation results show that the overall hydromechanical slope stability deteriorates, and the potential failure nay initiate from the slope toe and propagate toward the slope crest as the rainfall rate increases. From the viewpoint of hydrogeology, the pressure head and hence the total hydraulic head increase as the rainfall rate increases. As a result, the groundwater table rises, the unsaturated zone reduces, the seepage face expands from the slope toe toward the slope crest, and the groundwater flow velocity increases along the seepage face. From the viewpoint of geomechanics, the horizontal displacement increases, and the vertical displacement decreases toward the slope toe as the rainfall rate increases. This may result from the buoyancy effect associated with the groundwater table rise as the rainfall rate increases. As a result, the overall deformation intensifies toward the slope toe, and the unstable zone, in which the factor of safety against shear failure is less than 1, becomes thicker near the slope toe and propagates from the slope toe toward the slope crest. The numerical simulation results also suggest that the potential tension failure is likely to occur within the slope between the potential shear failure surface and the ground surface.

Sequential Use of COMSOL Multiphysics® and PyLith for Poroelastic Modeling of Fluid Injection and Induced Earthquakes (COMSOL Multiphysics®와 PyLith의 순차 적용을 통한 지중 유체 주입과 유발지진 공탄성 수치 모사 기법 연구)

  • Jang, Chan-Hee;Kim, Hyun Na;So, Byung-Dal
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.643-659
    • /
    • 2022
  • Geologic sequestration technologies such as CCS (carbon capture and storage), EGS (enhanced geothermal systems), and EOR (enhanced oil recovery) have been widely implemented in recent years, prompting evaluation of the mechanical stability of storage sites. As fluid injection can stimulate mechanical instability in storage layers by perturbing the stress state and pore pressure, poroelastic models considering various injection scenarios are required. In this study, we calculate the pore pressure, stress distribution, and vertical displacement along a surface using commercial finite element software (COMSOL); fault slips are subsequently simulated using PyLith, an open-source finite element software. The displacement fields, are obtained from PyLith is transferred back to COMSOL to determine changes in coseismic stresses and surface displacements. Our sequential use of COMSOL-PyLith-COMSOL for poroelastic modeling of fluid-injection and induced-earthquakes reveals large variations of pore pressure, vertical displacement, and Coulomb failure stress change during injection periods. On the other hand, the residual stress diffuses into the remote field after injection stops. This flow pattern suggests the necessity of numerical modeling and long-term monitoring, even after injection has stopped. We found that the time at which the Coulomb failure stress reaches the critical point greatly varies with the hydraulic and poroelastic properties (e.g., permeability and Biot-Willis coefficient) of the fault and injection layer. We suggest that an understanding of the detailed physical properties of the surrounding layer is important in selecting the injection site. Our numerical results showing the surface displacement and deviatoric stress distribution with different amounts of fault slip highlight the need to test more variable fault slip scenarios.