• Title/Summary/Keyword: poroelastic

Search Result 46, Processing Time 0.024 seconds

Sound Transmission Loss Maximization of Multi-panel Structures Lined with Poroelastic Materials by Topology Optimization (전달손실 최대화를 위한 흡음재-패널 배열 최적설계)

  • Kim, Yong-Jin;Lee, Joong-Seok;Kang, Yeon-June;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.728-733
    • /
    • 2008
  • Though multi-panel structures lined with a poroelastic material have been widely used to reduce sound transmission in various fields, most of the previous works to design them were conducted by repeated analyses or experiments based on initially given configurations or sequences. Therefore, it was difficult to obtain the optimal sequence of multi-panel structures lined with a poroelastic material yielding superior sound isolation capability. In this work, we propose a new design method to sequence a multi-panel structure lined with a poroelastic material having maximized sound transmission loss. Being formulated as a one-dimensional topology optimization problem for a given target frequency, the optimal sequencing of panel-poroelastic layers is systematically carried out in an iterative manner. In this method, a panel layer is expressed as a limiting case of a poroelastic layer to facilitate the optimization process. This means that main material properties of a poroelastic material are treated as Interpolated functions of design variables. The designed sequences of panel-poroelastic layers were shown to be significantly affected by the target frequencies; more panel layers were used at higher target frequencies. The sound transmission loss of the system was calculated by the transfer matrix derived from Biot's theory.

  • PDF

Effect of magnetic field on wave propagation in cylindrical poroelastic bone with cavity

  • Farhan, A.M.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.539-549
    • /
    • 2017
  • In this paper, the wave propagation in an infinite poroelastic cylindrical bone with cavity is studied. An exact closed form solution is presented by employing an analytical procedure. The frequency equation for poroelastic bone is obtained when the boundaries are stress free and is examined numerically. The magnitude of the frequency equation, wave velocity and attenuation coefficient are calculated for poroelastic bone for different values of magnetic field, density and frequency. In wet bone little frequency dispersion was observed, in contrast to the results of earlier studies. Such a model would in particular be useful in large-scale parametric studies of bone mechanical response. Comparison was made with the results obtained in the presence and absence of magnetic field. The results indicate that the effect of magnetic field, density and frequency on wave propagation in poroelastic bone are very pronounced.

Quantitative Assessment of Variation in Poroelastic Properties of Composite Materials Using Micromechanical RVE Models

  • Han, Su Yeon;Kim, Sung Jun;Shin, Eui Sup
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.175-183
    • /
    • 2016
  • A poroelastic composite material, containing different material phases and filled with fluids, serves as a model to formulate the overall ablative behaviors of such materials. This article deals with the assessment of variation in nondeterministic poroelastic properties of two-phase composite materials using micromechanical representative volume element (RVE) models. Considering the configuration and arrangement of pores in a matrix phase, various RVEs are modeled and analyzed according to their porosity. In order to quantitatively investigate the effects of microstructure, changes in effective elastic moduli and poroelastic parameters are measured via finite element (FE) analysis. The poroelastic parameters are calculated from the effective elastic moduli and the pore-pressure-induced strains. The reliability of the numerical results is verified through image-based FE models with the actual shape of pores in carbon-phenolic ablative materials. Additionally, the variation of strain energy density is measured, which can possibly be used to evaluate microstress concentrations.

Topology Optimization of Poroelastic Acoustic Foams for Absorption Coefficient Maximization (위상최적설계를 이용한 다공성 물질의 형상 최적화)

  • Kim, Yoon-Young;Kim, Jung-Soo;Kang, Yeon-June;Lee, Joong-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.934-937
    • /
    • 2006
  • This investigation presents a topology formulation to design optimal poroelastic acoustic foams to maximize absorbing ability. For successful formulation, a single set of equations based on Biot's theory is adopted and an appropriate material interpolation strategy is newly developed. Because there was no earlier attempt to solve poroelastic acoustic foam design problems in topology optimization setting, many challenging issues including modeling and interpolation must be addressed. First, the simulation accuracy by a proposed unified model encompassing acoustic air and poroelastic material was checked against analytical and numerical results. Then a material interpolation scheme yielding a distinct acoustic air-poroelastic material distribution was developed. Using the proposed model and interpolation scheme, the topology optimization of a two-dimensional poroelastic acoustic foam for maximizing its absorption coefficient was carried out. Numerical results show that the absorption capacity of an optimized foam layout considerably increases in comparison with a nominal foam layout.

  • PDF

Optimal sequencing of 1D acoustic system for sound transmission loss maximization using topology optimization method (전달손실 최대화를 위한 위상최적화기반 1차원 흡차음시스템의 최적 배열 설계)

  • Kim, Eun-Il;Lee, Joong-Seok;Kim, Yoon-Young;Kim, Jung-Soo;Kang, Yeon-June
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.309-314
    • /
    • 2007
  • Optimal layer sequencing of a multi-layered acoustical foam is solved to maximize its sound transmission loss. A foam consisting of air and poroelastic layers can be optimized when a limited amount of a poroelastic material is allowed. By formulating the sound transmission loss maximization problem as a one dimensional topology optimization problem, optimal layer sequencing and thickness were systematically found for several frequencies. For optimization, the transmission losses of air and poroelastic layers were calculated by the transfer matrix derived from Biot's theory. By interpolating five intrinsic parameters among several poroelastic material parameters, dear air-poroelastic layer distributions were obtained; no filtering or post-processing was necessary. The optimized foam layouts by the proposed method were shown to differ depending on the frequency of interest.

  • PDF

Optimization of Multilayered Foam-panel Sequence for Sound Transmission Loss Maximization (전달손실 최대화를 위한 다층 흡음재-패널 배열 최적설계)

  • Kim, Yong-Jin;Lee, Joong-Seok;Kang, Yeon-June;Kim, Yoon-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1262-1269
    • /
    • 2008
  • Though multilayered foam-panel structures have been widely used to reduce sound transmission in various fields, most of the previous works to design them were conducted by repeated analyses or experiments based on initially given configurations or sequences. Therefore, it was difficult to obtain an optimal sequence of multilayered foam-panel structure yielding superior sound isolation capability. In this work, we propose a new design method to sequence a multi-panel structure lined with a poroelastic material having maximized sound transmission loss. Being formulated as a one-dimensional topology optimization problem fur a given target frequency, the optimal sequencing of panel-poroelastic layers is systematically carried out in an iterative manner. In this method, a panel layer is expressed as a limiting case of a poroelastic layer to facilitate the optimization process. This means that main material properties of a poroelastic material are treated as interpolated functions of design variable. The designed sequences of panel-poroelastic multilayer were shown to be significantly affected by the target frequencies; more panels were obtained at higher target frequency. The sound transmission loss of the system was calculated by the transfer matrix derived from Biot's theory.

Sound Absorption Characteristics of Finite-Amplitude Acoustic Waves in Poroelastic Materials (탄성다공성 재질에서 유한진폭 입사음파의 흡음 특성)

  • Lee, Soo-Il;Kim, Jin-Seop;Kang, Yeon-June
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.591-595
    • /
    • 2000
  • Sound absorbing characteristics of poroelastic materials is known to be greatly affected by high intensity acoustic waves. However, this effect has not been considered yet. In this study, the extended semilinear model based on Biot's theory for the porous materials and the characteristics of nonlinear waves in poroelastic sound absorbing materials were introduced. The expressions for the finite-amplitude acoustic plane waves were presented. By combining each nonlinear wave with appropriate matching conditions, we could investigate the effects of finite-amplitude acoustic waves on absorption characteristics of poroelastic materials. In the most ideal case considered in this paper, the absorption coefficient was found to become larger than that of linear incident waves. It was shown that the absorption coefficient became greater especially as frequency goes higher and as distance from the source goes larger. These phenomena may be inferred to result from 'dissipation effects due to nonlinearity'. This finding may have important implications for high intensity noise control.

  • PDF

Image-Based Computational Modeling of Porous Matrix Composites and Calculation of Poroelastic Coefficients (다공성 기지를 갖는 복합재의 이미지 기반 전산 모형화 및 기공 탄성 계수 산출)

  • Kim, Sung Jun;Shin, Eui Sup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.527-534
    • /
    • 2014
  • Poroelastic analyses of fiber-reinforced composites were performed using image-based computational models. The section image of a porous matrix was analyzed in order to investigate the porosity, number of pores, and distribution of pores. The resolution, location, and size of the section image were considered to quantify the effective elastic modulus, poroelastic parameter, and strain energy density using the image-based computational models. The poroelastic parameter was calculated from the effective elastic modulus and pore pressure-induced strain. In addition, the results of the poroelastic analyses were verified through representative volume elements by simplifying various pore configurations and arrangements.

Calculation of Poroelastic Parameters of Porous Composites by Using Micromechanical Finite Element Models (미시역학적 유한요소 모델을 이용한 다공성 복합재료의 기공 탄성 인자 산출)

  • Kim, Sung-Jun;Han, Su-Yeon;Shin, Eui-Sup
    • Composites Research
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • In order to predict the thermoelastic behavior of porous composites, poroelastic parameters are measured by using micromechanics-based finite element models. The expanding deformation caused by pore pressure, and the degradation of homogenized elastic moduli with pores are calculated for the assessment of the poroelastic parameters. Various representative volume elements considering the shape, size, and array pattern of pores are modeled and analyzed by a finite element method. The effects of porosity and material anisotropy, and the distribution of stain energy density are investigated carefully. In addition, the measured poroelastic parameters are verified by predicting the thermo-pore-elastic behavior of carbon/phenolic composites.

Analysis of Disc Degeneration in a Poroelastic Spinal Motion Segment FE Model (다공탄성체 척추운동분절 유한요소 모델을 이용한 추간판의 퇴화과정 분석)

  • Woo D.G.;Kim Y.E.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.248-251
    • /
    • 2005
  • To investigate the degeneration process in the intervertebral disc, a three dimensional (3D) poroelastic finite-element (FE) model was developed. Disc was modeled as two different regions, such as annulus modeled with fiber reinforced 20 node poroelastic ground matrix and nucleus having large porosity. Excess Von Mises stress in the disc element assumed to be a possible source of degeneration under compressive loading condition. Recursive calculation was continued until the desired convergence was attained by changing the permeability and porosity of those elements, which could be predicted from the previous iteration. The degenerated disc model showed that relatively small compressive stresses were generated in the nucleus elements compared to normal disc. Its distribution along the sagittal plane was matched well with a previously reported experimental result. Contrasts to this result, pore pressures in the nucleus were higher than those in the normal disc. Total stress indicated similar values for two different models. This new approach using poroelastic modeling could provide the explanation of the interaction between fluid and solid matrix in the disc during the degeneration process.

  • PDF