• Title/Summary/Keyword: pore network

Search Result 102, Processing Time 0.032 seconds

Resolution and Image processing Methods of Tomogram and There impact of Computational Velocity Estimation (토모그램의 해상도와 영상처리 기법이 속도예측에 미치는 영향)

  • Lee, Min-Hui;Song, Da-Hee;Keehm, Young-Seuk
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.147-154
    • /
    • 2009
  • Physical properties of rocks, such as velocity, are strongly dependant on detailed pore structures, and recently, pore micro-structures by X-ray tomography techniques have been used to simulate and understand the physical properties. However, the smoothing effect during the tomographic reconstruction procedure often causes an artifact - overestimating the contact areas between grains. The pore nodes near a grain contact are affected by neighboring grain nodes, and are classified into grain nodes. By this artifact, the pore structure has higher contact areas between grains and thus higher velocity estimation than the true one. To reduce this artifact, we tried two image processing techniques - sharpening filter and neural network classification. Both methods gave noticeable improvement on contact areas between grains visually; however, the estimated velocities showed only incremental improvement. We then tried to change the resolutions of tomogram and quantify its impact on velocity estimation. The estimated velocity from the tomogram with higher spatial resolution was improved significantly, and with around 2 micron spatial resolution, the calculated velocity was very close to the lab measurement. In conclusion, the resolution of pore micro-structure is the most important parameter for accurate estimation of velocity using pore-scale simulation techniques. Also the estimation can be incrementally improved if combined with image processing techniques during the pore-grain classification.

  • PDF

Fabrication of Three-Dimensional Network Structures by an Electrochemical Method (전기화학적 방법을 통한 3차원 금속 다공성 막의 제조)

  • Kang, Dae-Keun;Heo, Jung-Ho;Shin, Heon-Cheol
    • Korean Journal of Materials Research
    • /
    • v.18 no.3
    • /
    • pp.163-168
    • /
    • 2008
  • The morphology of three-dimensional (3D) cross-linked electrodeposits of copper and tin was investigated as a function of the content of metal sulfate and acetic acid in a deposition bath. The composition of copper sulfate had little effect on the overall copper network structure, whereas that of tin sulfate produced significant differences in the tin network structure. The effect of the metal sulfate content on the copper and tin network is discussed in terms of whether or not hydrogen evolution occurs on electrodeposits. In addition, the hydrophobic additive, i.e., acetic acid, which suppresses the coalescence of evolved hydrogen bubbles and thereby makes the pore size controllable, proved to be detrimental to the formation of a well-defined network structure. This led to a non-uniform or discontinuous copper network. This implies that acetic acid critically retards the electrodeposition of copper.

Preparation and Characterization of Porous Polycaprolactone Membrane for Tissue Engineering (조직공학용 다공성 Polycaprolactone 멤브레인의 제조 및 특성)

  • Kim, Jin-Tae;Kim, Tae-Hyung;Choi, Jae Ha
    • Membrane Journal
    • /
    • v.26 no.1
    • /
    • pp.26-31
    • /
    • 2016
  • Polycaprolactone (PCL) has been fabricated into the membrane type scaffolds of 3 dimensional pore network for the tissue engineering applications by the blade method of salt (NaCl) leaching and solution casting. In this study, the experimental designs have each conditions of drying temperature, salt particle size, salt content. The modified dispensing pump connected up to homogenizing mixer system is used for mixing the $PCL/CHCl_3$ solution and NaCl particles. The membrane fabricated use by the film applicator to poured mixed solution on the glass plate. The great pore by NaCl particles and the small pore by the evaporated $CHCl_3$ in the frame wall of great pores are multiply formed in membrane scaffolds.

Simulation of brittle fracture of autoclaved aerated concrete

  • Kadashevich, I.;Stoyan, D.
    • Computers and Concrete
    • /
    • v.7 no.1
    • /
    • pp.39-51
    • /
    • 2010
  • The system of pores of autoclaved aerated concrete (AAC) is described by the so-called cherry-pit model, a random system of partially interpenetrating spheres. For the simulation of fracture processes, the solid phase is approximated by an irregular spatial network of beams obtained by means of the so-called radical tessellation with respect to the pore spheres. FE calculations using standard software (ANSYS) yield the strain energies of the beams. These energies are used as fracture criterion according to which highly loaded beams are considered as broken and are removed from the network. The paper investigates the relationship between mean fracture strength and microstructure for structures close to real AAC samples and virtual structures with particular geometrical properties.

Preparation of Superflux Nickel Capillary Support with 3D Macropore Channel Network For Gas Separation and Liquid Filtration Membranes (기체/액체 분리막을 위한 3차원 Macropore 채널을 갖는 Superflux 니켈 모세관 지지체의 제조)

  • Song, Ju-Seob;Cho, Churl-Hee
    • Membrane Journal
    • /
    • v.28 no.3
    • /
    • pp.214-219
    • /
    • 2018
  • In the present study, superflux nickel capillary supports for gas and vapor separation membranes were prepared by a combined process of NIPS and sintering. Nickel capillary precursors were prepared by NIPS process from PSf-Ni-DMAC-PEG400 dope solution and was sintered at various temperatures in $H_2$ atmosphere to reliably produce Ni capillary support. The optimized Ni capillary support has an outer and inner diameters of 722 and $550{\mu}m$, and its thickness was $94{\mu}m$. It has 3-dimensional pore channel network and its porosity and mean pore diameter was 26% and $4{\mu}m$, respectively. Also, its mechanical strength was tested in tensile mode: its fracture load was 2.84 kgf and the fracture elongation was 13%. Finally, its single gas permeance was measured: He, $N_2$, $O_2$, and $CO_2$ permeance was 432,327, 281,119, 264,259, and 193,143 GPU, respectively. The superflux behavior could be explained from viscous flow through the macropores having a diameter of $4{\mu}m$ and narrow thickness. It could be concluded that the superflux behavior of the Ni capillary support was from the 3-D pore channel network and the small thickness.

Fiber network with superhydrophilic Si-DLC coating

  • Kim, Seong-Jin;Mun, Myeong-Un;Lee, Gwang-Ryeol;Kim, Ho-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.363-363
    • /
    • 2010
  • The high capillarity of a plastic fiber network having superhydrophilic Si-DLC coating is studied. Although the superhydrophilic surface maximize wetting ability on the flat surface, there remains a requirement for the more wettable surface for various applications such as air-filters or liquid-filters. In this research, the PET non-woven fabric surface was realized by superhydrophilic coating. PTE non-woven fabric network was chosen due to its micro-pore structure, cheap price, and productivity. Superhydrophobic fiber network was prepared with a coating of oxgyen plasma treated Si-DLC films using plasma-enhanced chemical vapor deposition (PECVD). We first fabricated superhydrophilic fabric structure by using a polyethylene terephthalate (PET) non-woven fabric (NWF) coated with a nanostructured films of the Si-incorporated diamond-like carbon (Si-DLC) followed by the plasma dry etching with oxygen. The Si-DLC with oxygen plasma etching becomes a superhydrophilic and the Si-DLC coating have several advantages of easy coating procedure at room temperature, strong mechanical performance, and long-lasting property in superhydrophilicity. It was found that the superhydrophobic fiber network shows better wicking ability through micro-pores and enables water to have much faster spreading speed than merely superhydrophilic surface. Here, capillarity on superhydrophilic fabric structure is investigated from the spreading pattern of water flowing on the vertical surface in a gravitational field. As water flows on vertical flat solid surface always fall down in gravitational direction (i.e. gravity dominant flow), while water flows on vertical superhydrophilic fabric surface showed the capillary dominant spreading.

  • PDF

Heparin Release from Polyethyleneoxide-Polydimethylsiloxane Devices (폴리에틸렌 옥사이드-실리콘 Segment Device 에서 헤파린 용출)

  • 김성호
    • YAKHAK HOEJI
    • /
    • v.30 no.6
    • /
    • pp.306-310
    • /
    • 1986
  • The release of heparin from monolithic devices composed of different ratios of polyethylene oxide(PEO MW 20,000) and polydimethylsiloxane was investigated. Water soluble PEO plended into the polydimethylsiloxane proved a controlled release of heparin. The release rate of heparin could be controlled by varying the content of PEO and loading dose of heparin. The release rate of heparin from the devices increased as the content of PEO and heparin in the devices increased. The release rate of heparin from devices were related to nature of solute(ionic strength) and temperature. The release mechanism may be associated with the creation of pore or domine through the devices the water-uptake and the change in the physical structure of the polydimethysiloxane network.

  • PDF

Fabrication and Network Strengthening of Monolithic Silica Aerogels Using Water Glass (물유리를 이용한 모노리스 실리카 에어로젤의 제조 및 구조강화)

  • Han, In-Sub;Park, Jong-Chul;Kim, Se-Young;Hong, Ki-Seog;Hwang, Hae-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.3 s.298
    • /
    • pp.162-168
    • /
    • 2007
  • Silica wet gels were prepared ken water glass ($29\;wt%\;SiO_{2}$) by using Amberlite as a ion exchange resin. After washing in distilled water, the wet gels were further aged in a solution of TEOS/EtOH to strengthen of 3-dimensional network structure. As increase TEOS content in aging solution, BET surface area and porosity of the ambient dried silica aerogels were significantly decreased, and average pore diameter was also decreased 30 nm to -10 nm. Also, higher density and compressive strength were obtained in case of higher TEOS content. This is due to precipitation of $SiO_{2}$ nano particles by TEOS. Hence, TEOS addition plays an important role of both strengthening and stiffness of silica wet gel network. By adding over 30 vol% TEOS, a crack-free monolithic silica aerogel tiles were obtained and its density, compressive strength, and thermal conductivity were shown $0.232g/cm^{3}$, 7.3 MPa, and 0.029 W/mk, respectivly.

An Ultrathin Polymer Network through Polyion-Complex by Using Sodium Dioctadecyl Sulfate as Monolayer Template

  • Lee, Burm-Jong;Kim, Hee-Sang;Kim, Seong-Hoon;Son, Eun-Mi;Kim, Dong-Kyoo;Shin, Hoon-Kyu;Kwon, Young-Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.4
    • /
    • pp.575-579
    • /
    • 2002
  • Two-dimensionally cross-linked ultrathin films of poly(maleic acid-alt-methyl vinyl ether) (MA-MVE) and poly(allylamine) (PAA) were produced by using sodium dioctadecyl sulfate (2C18S) as the monolayer template for Langmuir-Blodgett (LB) depositio n. The template molecules were subsequently removed by thermal treatment followed by extraction. The polyion-complexed monolayers of three components, i.e., template 2C18S, co-spread PAA, and subphase MA-MVE, were formed at the air-water interface. Their monolayer properties were studied by the surface pressure-area isotherm. The monolayers were transferred on solid substrates as Y type. The polyion-complexed LB films and the resulting network films were characterized by FT-IR spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The cross-linking to form a polymer network was achieved by amide or imide formation through heat treatment under a vacuum. SEM observation of the film on a porous fluorocarbon membrane filter (pore diameter 0.1 ㎛) showed covering of the pores by four layers in the polyion complex state. Extraction by chloroform followed by heat treatment produced hole defects in the film.

Relation between Autogenous Shrinkage of Concrete and Relative Humidity, Capillary Pressure, Surface Energy in Pore (공극 내 상대습도, 모세관압력, 표면에너지 변화에 따른 콘크리트 자기수축)

  • Lee, Chang-Soo;Park, Jong-Hyok
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.131-138
    • /
    • 2008
  • Humidity and strain were estimated for understanding the relation between humidity change by self-desiccation and shrinkage in high-performance concrete with low water binder ratio. Internal humidity change and shrinkage strain were about 10%, 4% and $320\times10^{-6}$, $120\times10^{-6}$ respectively on concrete with water binder ratio 0.3, 0.4 and from the results, humidity change and shrinkage represented the strong linear relation regardless of mixture. For specifying the relation on internal humidity change and autogenous shrinkage strain, shrinkage model was established which is driven by capillary pressure in pore water and surface energy in hydrates on the assumption of a single network and extended meniscus in pore system of concrete. This model and experimental results had a similar tendency so it would be concluded that the internal humidity change by self-desiccation in HPC originated in small pores less than 20 nm, therefore controlling plan on autogenous shrinkage might be focused on surface tension of water and degree of saturation in small pore.