DOI QR코드

DOI QR Code

Fabrication and Network Strengthening of Monolithic Silica Aerogels Using Water Glass

물유리를 이용한 모노리스 실리카 에어로젤의 제조 및 구조강화

  • Han, In-Sub (Energy Materials Research Center, Korea Institute of Energy Research) ;
  • Park, Jong-Chul (Energy Materials Research Center, Korea Institute of Energy Research) ;
  • Kim, Se-Young (Energy Materials Research Center, Korea Institute of Energy Research) ;
  • Hong, Ki-Seog (Energy Materials Research Center, Korea Institute of Energy Research) ;
  • Hwang, Hae-Jin (Department of Materials Science and Engineering, Inha University)
  • 한인섭 (에너지재료연구센터 한국에너지기술연구원) ;
  • 박종철 (에너지재료연구센터 한국에너지기술연구원) ;
  • 김세영 (에너지재료연구센터 한국에너지기술연구원) ;
  • 홍기석 (에너지재료연구센터 한국에너지기술연구원) ;
  • 황해진 (인하대학교 재료공학과)
  • Published : 2007.03.31

Abstract

Silica wet gels were prepared ken water glass ($29\;wt%\;SiO_{2}$) by using Amberlite as a ion exchange resin. After washing in distilled water, the wet gels were further aged in a solution of TEOS/EtOH to strengthen of 3-dimensional network structure. As increase TEOS content in aging solution, BET surface area and porosity of the ambient dried silica aerogels were significantly decreased, and average pore diameter was also decreased 30 nm to -10 nm. Also, higher density and compressive strength were obtained in case of higher TEOS content. This is due to precipitation of $SiO_{2}$ nano particles by TEOS. Hence, TEOS addition plays an important role of both strengthening and stiffness of silica wet gel network. By adding over 30 vol% TEOS, a crack-free monolithic silica aerogel tiles were obtained and its density, compressive strength, and thermal conductivity were shown $0.232g/cm^{3}$, 7.3 MPa, and 0.029 W/mk, respectivly.

Keywords

References

  1. J. Fricke, 'Aerogels-Highly Tenuous Solids with Fascinating Properties,' J. Non-Crystalline Solids, 100 [1-3] 169- 73 (1988) https://doi.org/10.1016/0022-3093(88)90014-2
  2. P. Wang, W. Korner, A. Emmerling, A. Beck, J. Kuhn, and J. Fricke, 'Optical Investigations of Silica Aerogels,' J. Non-Crystalline Solids, 145 141-45 (1992) https://doi.org/10.1016/S0022-3093(05)80444-2
  3. L. Kocon, F. Despetis, and J. Palippou, 'Ultralow Density Silica Aerogels by Alcohol Supercritical Drying,' J. Non- Crystalline Solids, 225 [1] 96-100 (1998) https://doi.org/10.1016/S0022-3093(98)00322-6
  4. A. C. Pierre and G. M. Pajonk, 'Chemistry of Aerogels and Their Applications,' Chem. Rev., 102 [11] 4243-66 (2002) https://doi.org/10.1021/cr0101306
  5. C. A. Morris, M. L. Anderson, R. M. Stroud, C. I. Merzbacher, and D. R. Rolison, 'Silica Sol as a Nanoglue: Flexible Synthesis of Composite Aerogels,' Science, 284 622-24 (1999) https://doi.org/10.1126/science.284.5414.622
  6. L. W. Hrubesh and J. F. Poco, 'Thin Aerogel Films for Optical, Thermal, Acoustic and Electronic Applications,' J. Non-Crystalline Solids, 188 [1-2] 46-53 (1995) https://doi.org/10.1016/0022-3093(95)00028-3
  7. R. Gerlach, O. Kraus, J. Fricke, P.-C. Eccardt, N. Kroemer, and V. Magori, 'Modified $SiO_2$ Aerogels as Acoustic Impedance Matching Layers in Ultrasonic Devices,' J. Non-Crystalline Solids, 145 227-32 (1992) https://doi.org/10.1016/S0022-3093(05)80461-2
  8. A. C. Pierre and G. M. Pajonk, 'Chemistry of Aerogels and Their Applications,' Chem. Rev., 102 [11] 4243-66 (2002) https://doi.org/10.1021/cr0101306
  9. G. M. Pajonk, 'Aerogel Catalysts,' Applied Catalysis., 72 [2] 217-66 (1991) https://doi.org/10.1016/0166-9834(91)85054-Y
  10. D. Haranath, P. B. Wagh, G. M. Pajonk, and A. Venkateswara Rao, 'Influence of Sol-Gel Processing Parameters on the Ultrasonic Sound Velocities in Silica Aerogels,' Mater. Res. Bull., 32 [8] 1079-89 (1997) https://doi.org/10.1016/S0025-5408(97)00086-X
  11. J. Pinto da Cunha, F. Neves, and M. I. Lopes, 'On the Reconstruction of Cherenkov Rings from Aerogel Radiators,' Nucl. Instrum. Meth., A 452 [3] 401-21 (2000) https://doi.org/10.1016/S0168-9002(00)00452-6
  12. M. Schmidt and F. Schwertfeger, 'Applications for Silica Aerogel Products,' J. Non-Cryst. Solids, 225 [1] 364-68 (1998) https://doi.org/10.1016/S0022-3093(98)00054-4
  13. G. S. Kim and S. H. Hyun, 'Synthesis of Window Glazing Coated with Silica Aerogel Films via Ambient Drying,' J. Non-Crystalline Solids, 320 125-32 (2003) https://doi.org/10.1016/S0022-3093(03)00027-9
  14. S. S. Prakash, C. J. Brinker, A. J. Hurd, and S. M. Rao, 'Silica Aerogel Films Prepared at Ambient Pressure by Using Surface Derivatization to Induce Reversible Drying Shrinkage,' Nature, 374 439-43 (1995) https://doi.org/10.1038/374439a0
  15. S. S. Prakash, C. J. Brinker, and A. J. Hurd, 'Silica Aerogel Films at Ambient Pressure,' J. Non-Crystalline Solids, 190 [3] 264-75 (1995) https://doi.org/10.1016/0022-3093(95)00024-0
  16. H. S. Yang, S. Y. Choi, S. H. Hyun, H. H. Park, and J. K. Hong, 'Ambient-Dried Low Dielectric SiO2 Aerogel Thin Film,' J. Non-Crystalline Solids, 221 [2-3] 151-56 (1997) https://doi.org/10.1016/S0022-3093(97)00335-9
  17. A. Venkateswara Rao, A. Parvathy Rao, and M. M. Kulkarni, 'Influence of Gel Aging and $Na_2SiO_3/H_2O$ Molar Ratio on Monolithicity and Physical Properties of Water-Glass-Based Aerogels Dried at Atmospheric Pressure,' J. Non-Crystalline Solids, 350 224-29 (2004) https://doi.org/10.1016/j.jnoncrysol.2004.07.083
  18. A. Venkateswara Rao, E. Nilsen, and M. A. Einarsrud, 'Effect of Precursors, Methylation Agents and Solvents on the Physicochemical Properties of Silica Aerogels Prepared by Atmospheric Pressure Drying Method,' J. Non-Crystalline Solids, 296 [3] 165-71 (2001) https://doi.org/10.1016/S0022-3093(01)00907-3

Cited by

  1. Synthesis of MWCNTs doped sodium silicate based aerogels by ambient pressure drying vol.62, pp.2, 2012, https://doi.org/10.1007/s10971-012-2710-1