DOI QR코드

DOI QR Code

Preparation of Superflux Nickel Capillary Support with 3D Macropore Channel Network For Gas Separation and Liquid Filtration Membranes

기체/액체 분리막을 위한 3차원 Macropore 채널을 갖는 Superflux 니켈 모세관 지지체의 제조

  • Song, Ju-Seob (Department of Energy Science and Technology, Graduate School of Energy Science and Technology (GEST), Chungnam National University) ;
  • Cho, Churl-Hee (Department of Energy Science and Technology, Graduate School of Energy Science and Technology (GEST), Chungnam National University)
  • 송주섭 (충남대학교 에너지과학기술대학원 에너지과학기술학과) ;
  • 조철희 (충남대학교 에너지과학기술대학원 에너지과학기술학과)
  • Received : 2018.04.30
  • Accepted : 2018.06.30
  • Published : 2018.06.30

Abstract

In the present study, superflux nickel capillary supports for gas and vapor separation membranes were prepared by a combined process of NIPS and sintering. Nickel capillary precursors were prepared by NIPS process from PSf-Ni-DMAC-PEG400 dope solution and was sintered at various temperatures in $H_2$ atmosphere to reliably produce Ni capillary support. The optimized Ni capillary support has an outer and inner diameters of 722 and $550{\mu}m$, and its thickness was $94{\mu}m$. It has 3-dimensional pore channel network and its porosity and mean pore diameter was 26% and $4{\mu}m$, respectively. Also, its mechanical strength was tested in tensile mode: its fracture load was 2.84 kgf and the fracture elongation was 13%. Finally, its single gas permeance was measured: He, $N_2$, $O_2$, and $CO_2$ permeance was 432,327, 281,119, 264,259, and 193,143 GPU, respectively. The superflux behavior could be explained from viscous flow through the macropores having a diameter of $4{\mu}m$ and narrow thickness. It could be concluded that the superflux behavior of the Ni capillary support was from the 3-D pore channel network and the small thickness.

본 연구에서는 비용매 유도 상분리와 소결 공정을 혼용하여 기체 및 액체에 대하여 슈퍼플럭스 거동을 보이는 니켈 모세관 지지체를 성공적으로 제조하였다. 니켈 모세관 전구체는 니켈, 폴리술폰, DMAC, PEG를 이용하여 도프용액을 제조한 후 NIPS 공정에 의하여 제조된 후에, 다양한 소결온도에서 수소 분위기 조건에서 소결하여 니켈 모세관 지지체를 제조하였다. 최적의 니켈 모세관 지지체는 $950^{\circ}C$ 소결온도에서 얻어졌는데 외경 $722{\mu}m$, 내경 $550{\mu}m$, 두께 $94{\mu}m$이었다. 니켈 모세관 지지체 기공율은 26%, 평균 기공경은 $4{\mu}m$이었으며 3차원으로 서로 연결된 기공구조를 갖고 있었다. 그리고 파괴하중은 2.84 kgf, 파괴 연신율은 13%이었다. 니켈 모세관 지지체의 He, $N_2$, $O_2$, $CO_2$에 대한 단일 기체 투과도는 상온에서 각각 432,327, 281,119, 264,259, 193,143 GPU로 슈퍼플럭스 거동을 보였다. 이는 3차원적으로 서로 연결된 $4{\mu}m$ 크기 마크로기공을 통하여 viscous flow가 일어났기 때문에 나타나는 현상으로 설명되었다.

Keywords

References

  1. Y. Yampolskii and B. Freeman, "Membrane Gas Separation," 1st edition, John Wiley & Son Ltd, UK (2010).
  2. A. Brunetti, F. Scura, G. Barbieri, and E. Drioli., "Membrane technologies for $CO_2$ separation," Journal of Membrane Science, 359, 115 (2010). https://doi.org/10.1016/j.memsci.2009.11.040
  3. C. A. Scholes, K. H. Smith, S. E. Kentish, and G. W. Stevens, "$CO_2$ capture from pre-combustion processes - Strategies for membrane gas separation", International Journal of Greenhouse Gas Control, 4, 739 (2010). https://doi.org/10.1016/j.ijggc.2010.04.001
  4. W. Chi, J. Lee, M. Park, and J. Kim, "Recent research trends of mixed matrix membranes for $CO_2$ separation", Membr. J., 25, 373 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.5.373
  5. S. Nam, A. Park, and Y. Park, "Separation and recovery of F-gases", Membr. J., 23, 189 (2013).
  6. H. Koh, S. Ha, S. Woo, S. Nam, B. Lee, C. Lee, and W. Choi, "Separation and purification of bio gas by hollow fiber gas separation membrane module", Membr. J., 21, 177 (2011).
  7. P. Bernardo and G. Clarizia, "30 years of membrane technology for gas separation", Chemical engineering transactions, 32, 1999 (2013).
  8. B. D. Freeman, "Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes", Macromolecules, 32, 375 (1999). https://doi.org/10.1021/ma9814548
  9. L. M. Robeson, "Correlation of separation factor versus permeability for polymeric membranes", J. Membr. Sci., 62, 165 (1991). https://doi.org/10.1016/0376-7388(91)80060-J
  10. I. Pinnau, J. G. Wikmans, I. Blume, T. Kuroda, and K. V. Peinemann, "Gas permeation through composite membranes", J. Membr. Sci., 37, 81 (1988). https://doi.org/10.1016/S0376-7388(00)85070-X
  11. J. M. S. Henis and M. K. Tripodi, "Multicomponent membranes for gas separations", US Patent, 4230463A (1980).
  12. J. M. S. Henis and M. K. Tripodi, "Composite hollow fiber membranes for gas separation: The resistance model approach", J. Membr. Sci., 8, 233 (1981). https://doi.org/10.1016/S0376-7388(00)82312-1
  13. I. Blume and I. Pinnau, "Composite membrane, method of preparation and use", US Patent, 4963165 (1990).
  14. S. Lee, I. Choi, S. Myung, J. Park, I. Kim, W. Kim, and K. Lee, "Preparation and characterization of nickel hollow fiber membrane", Desalination, 233, 32 (2008). https://doi.org/10.1016/j.desal.2007.09.024
  15. M. Wang, J. Song, X. Wu, X. Tan, B. Meng, and S. Liu, "Metallic nickel hollow fiber membranes for hydrogen separation at high temperatures", J. Membr. Sci., 509, 156 (2016). https://doi.org/10.1016/j.memsci.2016.02.025
  16. B. Meng, X. Tan, X. Meng, S. Qiao, and S. Liu, "Porous and dense Ni hollow fiber membranes", Journal of alloys and compounds, 470, 461 (2009). https://doi.org/10.1016/j.jallcom.2008.02.106