• Title/Summary/Keyword: pore morphology

Search Result 292, Processing Time 0.03 seconds

Optimized Synthesis Conditions of Polyethersulfone Support Layer for Enhanced Water Flux for Thin Film Composite Membrane

  • Son, Moon;Choi, Hyeongyu;Liu, Lei;Park, Hosik;Choi, Heechul
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.339-344
    • /
    • 2014
  • Different types of polyethersulfone (PES) support layer for a thin film composite (TFC) membrane were synthesized under various synthesis conditions using the phase inversion method to study the combined effects of substrate, adhesive, and pore former. The permeability, selectivity, pore structure, and morphology of the prepared membranes were analyzed to evaluate the membrane performance. The combined use of substrate, adhesive, and pore former produced a thinner dense top layer, with more straight finger-like pores. The pure water permeation (PWP) of the optimized PES membrane was $27.42L/m^2hr$ (LMH), whereas that of bare PES membrane was 3.24 LMH. Moreover, membrane selectivity, represented as divalent ion ($CaSO_4$) rejection, was not sacrificed under the synthesis conditions, which produced the dramatically enhanced PWP. The high permeability and selectivity of the PES membrane produced under the optimized synthesis conditions suggest that it can be utilized as a potential support layer for TFC membranes.

Study on Improvement of Corrosion Resistance and Wear Resistance by Anodizing and Sealing Treatment with Nano-diamond Powder on aluminum (알루미늄의 아노다이징과 나노 다이아몬드 분말 봉공처리에 의한 내식성과 내마모성 향상에 관한 연구)

  • Kang, Soo Young;Lee, Dae Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.3
    • /
    • pp.121-127
    • /
    • 2014
  • In this study, in order to improve corrosion resistance and wear resistance of aluminum, surface treatment was made by anodizing with oxalic acid solution and sealing with nano-diamond powder. Average size of nano-diamond powder was 30nm. Anodizing with oxalic acid made many pores in the aluminum oxide layer. Pore size and oxide thickness were investigated by scanning electron microscope (SEM). Pore size increased as temperature increased and voltage increased. It was possible to make oxide layer with pore diameter more than 50 nm. Oxide thickness increased as temperature and voltage and treatment time increased. Oxide layer with above $10{\mu}m$ thickness was made. Aluminum oxide layer with many pores was sealed by water with nano-diamond powder. Surface morphology was investigated by SEM. After sealing treatment with nano-diamond powder, corrosion resistance, wear resistance and hardness increased.

Study on effect of chemical impregnation on the surface and porous characteristics of activated carbon fabric prepared from viscose rayon

  • Bhati, Surendra;Mahur, J.S.;Dixit, Savita;Chobey, O.N.
    • Carbon letters
    • /
    • v.15 no.1
    • /
    • pp.45-49
    • /
    • 2014
  • In this study, synthetic viscose rayon fabric has been used for preparing activated carbon fabric (ACF), impregnated with different concentrations of $H_3PO_4$. The effect of $H_3PO_4$ impregnation on the weight yield, surface area, pore volume, chemical composition and morphology of ACF were studied. Experimental results revealed that both Brunauer-Emmett-Teller surface area and micropore volume increased with increasing $H_3PO_4$ concentration; however, the weight yield and microporosity (%) decreased. It was observed that samples impregnated at $70^{\circ}C$ (AC-70) give higher yield and higher microporosity as compared to $30^{\circ}C$ (AC-30). The average pore size of the ACF also gradually increases from 18.2 to 19 and 16.7 to $20.4{\AA}$ for $30^{\circ}C$ and $70^{\circ}C$, respectively. The pore size distribution of ACF was also studied. It is also concluded that the final ACF strength is dependent on the concentration of impregnant.

Freeze Cast Porous Mullite Ceramics and Recycling of Coal Fly Ash (동결주조 다공질 뮬라이트 세라믹스의 제조와 석탄회의 재활용)

  • Kim, Kyu Heon;Yoon, Seog Young;Park, Hong Chae
    • Korean Journal of Materials Research
    • /
    • v.26 no.2
    • /
    • pp.61-66
    • /
    • 2016
  • In order to fabricate porous mullite ceramics with controlled pore structure and improved mechanical strength, a freeze casting route has been processed using camphene mixed with tertiary-butyl alcohol (TBA) and coal fly ash/alumina as the solvent and the ceramic material, respectively. After sintering, the solidification characteristics of camphene and TBA solvent were evident in the pore morphology, i.e., dendritic and straight pore channels formed along the solidification directions of camphene and TBA ice, respectively, after sublimation. Also, the presence of microcracks was observed in the bodies sintered at $1500^{\circ}C$, mainly due to the difference in solidification volume change between camphene and TBA. The compressive strength of the sintered bodies was found generally to be dependent, in an inverse manner, on the porosity, which was mainly determined by the processing conditions. After sintering at $1300{\sim}1500^{\circ}C$ with 30~50 wt% solid loading, the resulting mullite ceramics showed porosity and compressive strength values in ranges of 83.8~43.1% and 3.7~206.8 MPa, respectively.

Microstructural Evolution and Mechanical Properties of Ti-6Al-4V Alloy through Selective Laser Melting: Comprehensive Study on the Effect of Hot Isostatic Pressing (HIP)

  • Gargi Roy;Raj Narayan Hajra;Woo Hyeok Kim;Jongwon Lee;Sangwoo Kim;Jeoung Han Kim
    • Journal of Powder Materials
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • This study explores the profound impact of varying oxygen content on microstructural and mechanical properties in specimens HO and LO. The higher oxygen concentration in specimen HO is found to significantly influence alpha lath sizes, resulting in a size of 0.5-1 ㎛, contrasting with the 1-1.5 ㎛ size observed in specimen LO. Pore fraction, governed by oxygen concentration, is high in specimen HO, registering a value of 0.11%, whereas specimen LO exhibits a lower pore fraction (0.02%). Varied pore types in each specimen further underscore the role of oxygen concentration in shaping microstructural morphology. Despite these microstructural variations, the average hardness remains consistent at ~370 HV. This study emphasizes the pivotal role of oxygen content in influencing microstructural features, contributing to a comprehensive understanding of the intricate interplay between elemental composition and material properties.

Characteristics of porous 3C-SiC thins formed by anodization (양극 산화법으로 형성된 다공질 3C-SiC 막의 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.45-45
    • /
    • 2009
  • This paper describes the formation of porous 3C-SiC by anodization. 3C-SiC thin films were deposited on p-type Si(100) substrates by APCVD using HMDS (Hexamethyildisilane: $Si_2(CH_3)_6$). UV-LED(380 nm) was used as a light source. The surface morphology was observed by SEM and the pore size was increased with increase of current density. Pore diameter of 70 ~ 90 nm was achieved at 7.1 $mA/cm^2$ current density and 90 sec anodization time. FT-IR was conducted for chemical bonding of thin film and porous 3C-SiC. The Si-H bonding was observed in porous 3C-SiC around wavenumber 2100 $cm^{-1}$. PL shows the band gap enegry of thin film (2.5 eV) and porous 3C-SiC (2.7 eV).

  • PDF

Membrane Morphology: Phase Inversion to Electrospinning

  • Chanunpanich N.;Byun Hongsik;Kang Inn-Kyu
    • Membrane Journal
    • /
    • v.15 no.2
    • /
    • pp.85-104
    • /
    • 2005
  • Recently, membrane can be prepared by two methods, phase inversion and electrospinning techniques. Phase inversion technique is a conventional but commercially preparation membrane. The most versatile of preparation in this technique is immersion of the cast film into nonsolvent bath, causing dense top layer with a finger-like pattern in the sub layer membrane. The membrane pore size getting from phase inversion is in the range of micro or submicrometer. As a result, it can be used as microfiltration and ultrafiltration applications. A new technique, electrospinning, is introduced for membrane preparation. Nonwoven nanofibrous mat or nanofibrous membrane is obtained. In this technique, electrostatic charge is introduced to the solution jet, causing a thin fiber with high surface area; hence it can be used in the applications where high surface area-to-volume or length-to-diameter ratios are required. Moreover, the pore size can be controlled by controlling the time of electrospinning. Hence, it can be used as a filter for filtering microparticles as well as nanoparticles.

Structural and Optical Properties of Porous Silicon Prepared by Electrochemical Etching

  • Lee, Jeong-Seok;Cho, Nam-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.109-112
    • /
    • 2002
  • The structural and optical features of Porous Silicon(PS) were investigated; the porous silicon was prepared by electrochemical etching of silicon wafers in HF solution. The morphologies and Photoluminescece(PL) features of the PS were investigated in terms of etching time, current density and aging conditions. The average pore diameter and pore depth were determined by current density and etching time, respectively. As-prepared PS exhibited the maximum PL peak at the wavelength of ∼ 450 nm. The degree of deviation from as-prepared PS during aging treatment seemed to depend on the microstructure as well as morphology of the PS. It is found that etching current density played an important role on the microstructural features of the PS.

Preparation and Characterization of Activated Henequen Fiber

  • Jeong, Jong-Seon;Lee, Young-Seak;Yang, Xiao Ping;Ryu, Seung-Kon
    • Carbon letters
    • /
    • v.10 no.4
    • /
    • pp.339-344
    • /
    • 2009
  • Henequen fiber was air-stabilized, carbonized, and steam-activated to obtain high surface area activated henequen fiber (AHF). Thermal behavior of henequen fibers has been studied by TGA. The structural morphology and characteristics were observed by SEM and BET surface area measurement. The yield of AHF from natural henequen was in the range of 20~25 wt%. Mesopores (2~2.5 nm) were developed on the AHF as the activation temperature was raised up to $700^{\circ}C$, and the band of mesopore size distribution moved to 15~30 nm when the activation were carried out at $900^{\circ}C$ for 30 min. The specific surface area and the total pore volume were about $1394\;m^2/g$ and $1.30\;cm^3/g$, respectively at this activation conditions.

Further observations on the genetics and morphometrics of Coolia santacroce (Dinophyceae)

  • Karafas, Sarah J.;Tomas, Carmelo R.
    • ALGAE
    • /
    • v.30 no.4
    • /
    • pp.275-280
    • /
    • 2015
  • Coolia santacroce is a newly described epibenthic dinoflagellate species collected from the U.S. Virgin Islands. The original description indicates this species is unique from others in the Coolia monotis complex due to the relative size of the apical pore complex, broad range of pore sizes, and ribosomal DNA. The original description was done based on the isolation and cultivation of one isolate of the organism. In this study, we report three more isolates of Coolia santacroce collected from the Bahamas. Morphological observations were made using scanning electron microscopy that do not correspond to those from the original description, indicating the variability of the morphological features. However, analysis of the D1 / D2 regions of the large subunit rDNA places the three strains in a strongly supported monophyletic clade with the type specimen.