• 제목/요약/키워드: pore evolution

검색결과 79건 처리시간 0.023초

액상소결의 기공채움 이론과 미세구조 발달 (Pore Filling Theory of Liquid Phase Sintering and Microstrcture Evolution)

  • 이성민
    • 한국분말재료학회지
    • /
    • 제6권1호
    • /
    • pp.81-87
    • /
    • 1999
  • Based on the pore filling theory, the microstructure evolution during liquid-phase sintering has been analyzed in terms of interrelationship between average grain size and relative density. For constant liquid volume fraction, the microsturucture trajectories reduced to a single curve in a grain size(x)-density(y) map, regardless of grain growth constant. The slope of curves in the map was inversely proportional to average pore size, while it increased fapidly with liquid volume fraction. Increase in pore volume fraction retarded the densification considerably, but showed marginal effect on the slope. The activation energy of densification was predicted to be the same as that of grain growth as long as the liquid volume fraction is constant for any temperature range studied. The present analyses on microstricture evolution may demonstrate the usefulness of pore filling theory and provide a guideline for process optimization of liquid-phase sintering.

  • PDF

Ion Implantation으로 Ca를 첨가한 단결정 Al2O3의 Crack-like Pore의 Healing 거동 - I. Crack-like Pore의 형성과 Morphological Evolution (Effect of Ca Implantation on the Sintering and Crack Healing Behavior of High Purity Al2O3 Using Micro-lithographic Technique - I. Formation of Crack-like Pore and Its Morphological Evolution)

  • 김배연
    • 한국세라믹학회지
    • /
    • 제34권8호
    • /
    • pp.834-842
    • /
    • 1997
  • Controlled Ca impurity implanted inner crack-like pore in the high purity alumina single crystal, sapphire, had been created by micro-fabrication technique, which includes ion implantation, photo-lithography, Ar ion milling, and hot press technique. The morphological change and the healing of cracklike pore in Ca doped high purity single crystal alumina, sapphire, during high temperature heat treatment in vacuum were observed using optical microscopy. The dot-like surface roughening was developed and hexagon like crystal appeared on inner surface of crack-like pore after heat treatment. Bar type crystals, probably CaO.6Al2O3, were observed on the inner surface after 1 hour heat treatment at 1, 50$0^{\circ}C$, but this bar type crystal disappeared after 1 hour heat treatment at 1, $600^{\circ}C$. This disappearance means that there should be a little increase of Ca solubility limit to alumina at this temperatures.

  • PDF

The influence of fine particle migration on pore structure of overlying ballast under cyclic loading

  • Yu Ding;Yu Jia;Zhongling Zong;Xuan Wang;Jiasheng Zhang;Min Ni
    • Geomechanics and Engineering
    • /
    • 제35권6호
    • /
    • pp.627-636
    • /
    • 2023
  • The essence of subgrade mud pumping under train load is the migration of fine particles in subgrade soil. The migration of fine particles will change the pore structure of overlying ballast, thus affecting the mechanical properties and hydraulic properties of ballast layer. It is of great theoretical significance and engineering value to study the effect of fine particle migration on the pore structure of ballast layer under cyclic loading. In this paper, a tailor-made subgrade mud pumping test model and an X-ray computed tomography (CT) scanning equipment were used to study the influence of migration of fine particles in subgrade soil on the pore parameters (plane porosity, volume porosity, pore distribution and pore connectivity) of overlying ballast under cyclic loading. The results show that the compression of ballast pores and the blockage of migrated fine particles make the porosity of ballast layer decreases gradually. And the percentage of small pores in ballast layer increases, while the percentage of large pores decreases; the connectivity of pores also gradually decreases. Based on the test results, an empirical model of ballast porosity evolution under cyclic loading is established and verified.

A progressive study of the sausage mode wave on the pore: the pore-selection technique

  • 조일현;김연한;조경석;봉수찬;박영득
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.66.2-66.2
    • /
    • 2013
  • In this study, we present a pore-selection technique to estimate the size of pore. The estimation of the size of pore is important to examine the temporal evolution of size itself and corresponding intensity. The size of pore is typically estimated by applying the intensity threshold technique to the fixed box which contains the entire pore. The typical method has disadvantages in the following circumstances; there are small features near the pore or the image has low spatial resolution. In the former, it is difficult to define a box containing the pore only, excluding the small features near the pore. In the latter, the background and threshold intensity are insignificant due to the insufficient number of pixel in the box. To avoid these difficulties, we use a pore-selection technique which is simply based on the measurement of distances from the pore center. In addition, we will discuss the advantage of the technique for the imaging spectrograph data like the NST FISS.

  • PDF

Heating of a coronal loop by the evolution of the fine-scale magnetic discontinuity in the photosphere

  • Song, Donguk;Chae, Jongchul;Park, Soyoung;Ahn, Kwangsu;Cao, Wenda
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.84.3-85
    • /
    • 2015
  • We report a small-scale EUV bright loop associated with the evolution of the fine-scale magnetic discontinuity in the photosphere. Our analysis was carried out by using the high spatial resolution data taken with InfraRed Imaging Magnetograph (IRIM) and the Fast Imaging Solar Spectrograph (FISS). As a result, an extremely narrow dark lane of the intense horizontal magnetic field (width ~ 300 km) is detected parallel to the boundary of the magnetic pore, which is one of the footpoints of the small-scale bright coronal loop. We find that the variation of the net linear polarization inside the dark lane is closely related to the intensity variations of the coronal loop. Based on our results, we suggest that small-scale atmospheric heating such as bright coronal loop seen above the complex pore group may be strongly affected by the evolution of the fine-scale magnetic discontinuity in the photosphere. This is a nice example of solar atmospheric heatings associated with the fine-scale magnetic discontinuity in the photosphere.

  • PDF

Comparison of Different Permeability Models for Production-induced Compaction in Sandstone Reservoirs

  • To, Thanh;Chang, Chandong
    • 지질공학
    • /
    • 제29권4호
    • /
    • pp.367-381
    • /
    • 2019
  • We investigate pore pressure conditions and reservoir compaction associated with oil and gas production using 3 different permeability models, which are all based on one-dimensional radial flow diffusion model, but differ in considering permeability evolution during production. Model 1 assumes the most simplistic constant and invariable permeability regardless of production; Model 2 considers permeability reduction associated with reservoir compaction only due to pore pressure drawdown during production; Model 3 also considers permeability reduction but due to the effects of both pore pressure drawdown and coupled pore pressure-stress process. We first derive a unified stress-permeability relation that can be used for various sandstones. We then apply this equation to calculate pore pressure and permeability changes in the reservoir due to fluid extraction using the three permeability models. All the three models yield pore pressure profiles in the form of pressure funnel with different amounts of drawdown. Model 1, assuming constant permeability, obviously predicts the least amount of drawdown with pore pressure condition highest among the three models investigated. Model 2 estimates the largest amount of drawdown and lowest pore pressure condition. Model 3 shows slightly higher pore pressure condition than Model 2 because stress-pore pressure coupling process reduces the effective stress increase due to pore pressure depletion. We compare field data of production rate with the results of the three models. While models 1 and 2 respectively overestimates and underestimates the production rate, Model 3 estimates the field data fairly well. Our result affirms that coupling process between stress and pore pressure occurs during production, and that it is important to incorporate the coupling process in the permeability modeling, especially for tight reservoir having low permeability.

초기재령 콘크리트의 세공구조 형성 및 발영특성에 관한 미시역학적 모델 (Micromechanics based Models for Pore-Sructure Formation and Hydration Heat in Early-Age Concrete)

  • 조호진;박상순;송하원;변근주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.123-128
    • /
    • 1999
  • Recently, as a performance based design concept is introduced, assurance of expected performances on serviceability and safety in the whole span of life is exactly requested. So, quantitative assessments about durability related properties of concrete in early-age long term are come to necessary, Especially in early age, deterioration which affects long-term durability performance can be occurred by hydration heat and shrinkage, so development of reasonable hydration heat model which can simulate early age behavior is necessary. The micor-pore structure formation property also affects shrinkage behavior in early age and carbonations and chloride ion penetration characteristic in long term, So, for the quantitative assessment on durability performance of concrete, modelings of early age concrete based on hydration process and micor-pore structure formation characteristics are important. In this paper, a micromechanics based hydration heat evolution model is adopted and a quantitative model which can simulate micro-pore structure development is also verified with experimental results. The models can be used effectively to simulate the early-age behavior of concrete composed of different mix proportions.

  • PDF

Effect of Carbon Addition and Sintering Temperature on Densification and Microstructural Evolution of Sinter-Hardening Alloys Steels

  • Verma, N.;Anand, S.;Upadhyaya, A.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.557-558
    • /
    • 2006
  • In all conventional sintered PM products, the pores present are of two types, primary and secondary. Primary pores forming during compaction and latter during sintering, due to penetration of formed liquid through the matrix grain boundary. Effect of carbon addition on diffusion of Cu in SH737-2Cu system was investigated. After compaction and transient liquid phase sintering at $1120^{\circ}C$ and $1180^{\circ}C$, samples were characterized for densification, showing rise in sintering density and reduction in swelling on carbon addition. Quantitative microstructural characterization (shape factor and pore size) revealed bimodal distribution for 0% carbon, more rounded pores for 0.9% carbon and higher sintering temperature, and pore coarsening at higher sintering temperature.

  • PDF

PZT 요업체의 소결과정 중 승온속도가 미세조직에 미치는 영향 (Effect of heating Rate on the Microstructural Evolution during Sintering of PZT Ceramics)

  • 박은태;김정주;조상희;김도연
    • 한국세라믹학회지
    • /
    • 제27권8호
    • /
    • pp.1020-1026
    • /
    • 1990
  • The effect of heating rate on the microstructural evolution during sintering of PZT ceramics has been investigated. In case of PZT powder compacts containing excess of PbO, fast heating caused incomplete rearrangement of solid grains in a liquid, resulting in lower density and inhomogeneous pore shape ; on contrary, slow heating resulted in better densification. In contrast, in case of compacts without excess PbO, the densification was enhanced by fast heating due to suppression of the grain growth.

  • PDF