• Title/Summary/Keyword: pore

Search Result 5,569, Processing Time 0.026 seconds

Evaluation of Pore Size Distribution of Berea Sandstone using X-ray Computed Tomography (X-ray CT를 이용한 베레아 사암의 공극크기분포 산정)

  • Kim, Kwang Yeom;Kim, Kyeongmin
    • The Journal of Engineering Geology
    • /
    • v.24 no.3
    • /
    • pp.353-362
    • /
    • 2014
  • Pore structures in porous rock play an important role in hydraulic & mechanical behaviour of rock. Porosity, size distribution and orientation of pores represent the characteristics of pore structures of porous rock. While effective porosity can be measured easily by conventional experiment, pore size distribution is hard to be quantified due to the lack of corresponding experiment. We assessed pore size distribution of Berea sandstone using X-ray CT image based analysis combined with associated images processing, i.e., image filtering, binarization and skeletonization subsequently followed by the assessment of local thickness and star chord length. The aim of this study is to propose a new and effective way to evaluate pore structures of porous rock using X-ray CT based analysis for pore size distribution.

Studies on Pore Characteristics of Several Adsorbents (담배용 흡착제들의 동공 특성에 관한 연구)

  • Rhim, Kwang-Soo;Chung, Yong-Soon;Lee, Young-Taek
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.16 no.2
    • /
    • pp.181-190
    • /
    • 1994
  • Various active carbons were made from plant sources of coconut shell, pine tree, oak tree and lignite coal. Pore characteristics of these adsorbents were investigated. 1, With increasing activation time, specific surface area and pore volume increased, but the development of micropores was limited at a certain level. The average pore diameter, by BET, of coconut active carbon was 15.5-21.8$\AA$ and that of lignite carbon was 15.6-31.3$\AA$. The pore diameters of silica-gel, sepiolite and zeolite was 30.9$\AA$, 58.6$\AA$ and 55.7$\AA$, respectively. 2. The Horvath - Kawazoe micropore diameter of coconut shell active carbon was under 10.5$\AA$ and that of the other active carbon was under 20.9$\AA$ but silica-gel 33$\AA$, sepiolite 103 $\AA$ and zeolite was unexpectedly large to be 175$\AA$. From the difference between BET micropore diameter and Howath - Kawazoe diameter, it could be said that silica - gel has comparatively uniform pore diameter but sepiolite and zeolite have very uneven diameter. 3. Total pore volume of coconut shell active carbon was 0.27-1.04 cm3/g but that of the other active carbon, 0.23-0.62 cm3/g, was much lower than that of coconut shell active carbon. Hydrophilic adsorbent silica - gel and sepiolite showed big difference in specific surface area, but pore volumes of these were 0.47 and 0.56 cm3/g showing similar value and micropore volumes of these were, respectively, 0.06 cm3/g and 0.04 cm3/g. Total pore volume of zeolite was 0.1 cm3/g and that of micropore was only 0.02 cm3/g.

  • PDF

Effects of Forest Fire on the Water Storage Characteristics of Forest Land (산불이 임지(林地)의 수저류(水貯留) 특성(特性)에 미치는 영향(影響))

  • Lee, Heon Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.1
    • /
    • pp.66-75
    • /
    • 1996
  • This study was carried out to examine the forest fire effect on water storage characteristics in the forests. Water storage capacity of the burned area was analyzed by several major factors, such as soil pore, maximum water content, effective water storage, and percolation rate. The results obtained from the analysis of major factors are as follows; The deeper soil depth, the less total pore, coarse pore, effective water storage, and percolation rate. However, fine pore increased slightly in both burned area and control plot. As compared with control plot, burned area showed lower percolation rate, coarse pore, and effective water storage, but higher values of fine pore. Directly after forest fire, the soil pore is little affected. But as the time passes, top soil structure changes and soil pore also is affected even in a deep soil. Estimated effective water storage was lower at top soil of Namcheon and at deep soil of Namha in all the burned areas, but slowly decreased in deep soil compared to control plots. Therefore it was concluded that forest water storage capacity was greatly affected by the forest fire.

  • PDF

Preparation of Pore-filled Ion-exchange Membranes using Poly(vinylbenzyl ammoninum salt) (Poly(vinylbenzyl ammonium salt)를 이용한 Pore-filled 이온교환막의 제조)

  • 변홍식
    • Membrane Journal
    • /
    • v.11 no.3
    • /
    • pp.109-115
    • /
    • 2001
  • Pore-filled ion-exchange membranes in which polypropylene(PP) microporous membrane was used as a nascent membrane were prepared by an in-situ cross-linking technique. Poly(vinylbenzyl chloride)(PVBCI) reacted with piperazine(PIP) or 1,4-diaminobicyclo[2,2,2]octane(DABCO) in a di-methylforamide(DMF) solution was filled in the pores of the microporous base membrane. After gellation the remaining chloromethyl groups were, then reacted with an amine such as trimethylamine to form positively charged, ammonium site. This will produce the pore-filled anion-exchange membrane. It was shown that this simple 2 step procedure gave dimensionally stable, pore-filled membranes in which the MG of polymer gel and degree of cross-linking could be easily controlled by the concentration of PVBCI and cross-linker in the starting DMF solution. Specially, high water permeability (7.8 kg/$m^2$hr, host membrane: PP3, MG: 73%, degree of cross-linking: 10%, crosslinker: PIP) at ultra low pressure(100 kPa) indicates the produced pore-filled membranes is usable as a water softening membrane.

  • PDF

Effect of Vapor Pressure of Adsorbate on Adsorption Phenomena (흡착질의 증기압이 흡착에 미치는 영향)

  • Kim, Sang-Won;Kwon, Jun-Ho;Kang, Jeong-Hwa;Song, Seung-Koo
    • Journal of Environmental Science International
    • /
    • v.17 no.1
    • /
    • pp.67-75
    • /
    • 2008
  • Adsorption process is largely influenced by pore structures of adsorbents and physical properties of adsorbates and adsorbents. The previous studies of this laboratory was focused on the role of pore structures of adsorbents. And we found some pores of adsorbates which have larger pore diameters than the diameter of adsorbate are filled with easily. In this study the effects of physical and chemical properties of adsorbates and adsorbents, such as pore size distribution, vapor pressure on adsorption were investigated more thoroughly at the concentration of adsorbate of 1000 ppm. The adsorption in the pore ranges of $2{\sim}4$ times of adsorbates's diameter could be explained by space filling concept. But there was some condensation phenomena at larger pore ranges. The errors between the adsorbed amount of non-polar adsorbates and the calculated amounts by considering factors were found to be 44.46%, positively, and -142%, negatively. When vapor pressure is considered, the errors between the adsorbed amount of non-polar adsorbates and the calculated amounts were in the range of $1.69%{\sim}32.25%$ positively, and negatively $-1.08%{\sim}-63.10%$.

Dynamic Analysis of Gravity Quay Wall Considering Development of Excess Pore Pressure in Backfill Soil (과잉간극수압 발생을 고려한 중력식 안벽구조물의 동적해석)

  • Ryu, Moo-Sung;Hwang, Jai-Ik;Kim, Sung-Ryul
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.39-47
    • /
    • 2010
  • In this paper, a total stress analysis method for gravity quay walls is suggested. The method can evaluate the displacement of the quay walls considering the effect of excess pore pressure developed in backfill soils. This method changes the stiffness of backfill soils according to the expected magnitude of the excess pore pressure. For practical application, evaluation methods are suggested for determining the excess pore pressure ratio developed in the backfill soils and the backfill stiffness that corresponds to the excess pore pressure ratio. This method is important in practical applications because the displacement of the quay walls can be evaluated by using only the basic input properties in the total stress analysis. The applicability of the suggested method was verified by comparing the results of the analysis with the results of 1-g shaking table tests. From the comparison, it was found that the calculated displacements from the suggested method showed good agreement with the measured displacements of the quay walls. It was also found that the excess pore pressure in backfill soils is a governing influence on the dynamic behavior of quay walls.

The formation of highly ordered nano pores in Anodic Aluminum Oxide

  • Im, Wan-soon;Cho, Kyung-Chul;Cho, You-suk;Park, Gyu-Seok;Kim, Dojin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.53-53
    • /
    • 2003
  • There has been increasing interest in the fabrication of nano-sized structures because of their various advantages and applications. Anodic Aluminum Oxide (AAO) is one of the most successful methods to obtain highly ordered nano pores and channels. Also It can be obtained diverse pore diameter, density and depth through the control of anodization condition. The three types of substrates were used for anodization; sheets of Aluminum on Si wafer and Aluminum on Mo-coated Si wafer. In Aluminum sheet, a highly ordered array of nanoholes was formed by the two step anodization in 0.3M oxalic acid solutions at 10$^{\circ}C$ After the anodization, the remained aluminum was removed in a saturated HgCl$_2$ solution. Subsequently, the barrier layer at the pore bottom was opened by chemical etching in phosphoric acid. Finally, we can obtain the through-channel membrane. In these processes, the effect of various parameters such as anodizing voltage, anodizing time, pore widening time and pre-heat treatment are characterized by FE-SEM (HITACH-4700). The pore size. density and growth rate of membrane are depended on the anodizing voltage and temperature respectively. The pore size is proportional to applied voltage and pore widening time The pore density can be controlled by anodizing temperature and voltage.

  • PDF

Effect of Sublimable Vehicle Compositions in the Camphor-Naphthalene System on the Pore Structure of Porous Cu-Ni (Camphor-Naphthalene 동결제 조성이 Cu-Ni 다공체의 기공구조에 미치는 영향)

  • Kwon, Na-Yeon;Suk, Myung-Jin;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.22 no.5
    • /
    • pp.362-366
    • /
    • 2015
  • The effect of sublimable vehicle composition in the camphor-naphthalene system on the pore structure of porous Cu-Ni alloy is investigated. The CuO-NiO mixed slurries with hypoeutectic, eutectic and hypereutectic compositions are frozen into a mold at $-25^{\circ}C$. Pores are generated by sublimation of the vehicles at room temperature. After hydrogen reduction at $300^{\circ}C$ and sintering at $850^{\circ}C$ for 1 h, the green body of CuO-NiO is completely converted to porous Cu-Ni alloy with various pore structures. The sintered samples show large pores which are aligned parallel to the sublimable vehicle growth direction. The pore size and porosity decrease with increase in powder content due to the degree of powder rearrangement in slurry. In the hypoeutectic composition slurry, small pores with dendritic morphology are observed in the sintered Cu-Ni, whereas the specimen of hypereutectic composition shows pore structure of plate shape. The change of pore structure is explained by growth behavior of primary camphor and naphthalene crystals during solidification of camphor-naphthalene alloys.

A Study on the Variation of Tensile Ductility in Porous Sintered Pure Aluminum (다공성 소결 순 Al에서 인장연성 변화에 관한 연구)

  • Jung, J.Y.
    • Transactions of Materials Processing
    • /
    • v.27 no.2
    • /
    • pp.93-99
    • /
    • 2018
  • An analytical solution for the tensile ductility in porous ductile materials was derived based on an Irwin's approach of the elastic-plastic deformation in fracture mechanics. This was in good agreement with the experimental results of a tensile ductility in a sintered pure Al, and could solve the discrepancies in the Brown and Embury, or the McClintock models. This model was also offered as an advanced analytical solution considering the effect of stress triaxiality of pore tip in addition to pore interactions, material properties of matrix, and local deformation effect around pore. The evaluation of an analytical solution in the sintered pure Al powder compacts showed that the tensile ductility depends not only on the volume fraction of pores, but also on the pore size and on the mechanical properties of the matrix. The tensile ductility of the sintered pure Al compacts decreased rapidly with the increasing of a pore volume fraction, despite of the excellent tensile ductility of the matrix. This significant decrease in the tensile ductility was mainly attributed to the low yield strength of the matrix and small pore size. Particularly, the effects of the large radius and high volume fraction of the pore on the tensile ductility in Al-Form, were thus reasonably predicted by this analytical equation.

Pore Size and its Distribution as a Function of Sintered Density of UO2-20 wt%CeO2Pellets (UO2-20 wt%CeO2소결체의 밀도에 따른 기공크기 및 분포)

  • 나상호;김기홍;김시형;이영우;유명준
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.6
    • /
    • pp.572-576
    • /
    • 2003
  • Open/closed porosity, pore size and its distribution and pore type as a funtion of sintered density of UO$_2$-20 wt%CeO$_2$ pellets were investigated. Pore appeared almost closed-type with the density above 96% of the theoretical density. Bimodal pore size distribution was observed regardless of the sintered density, but the number of pore decreased with increasing the sintered density. The shape of pore was changed from irregular shape to round type with increasing the sintered density.