Browse > Article
http://dx.doi.org/10.4150/KPMI.2015.22.5.362

Effect of Sublimable Vehicle Compositions in the Camphor-Naphthalene System on the Pore Structure of Porous Cu-Ni  

Kwon, Na-Yeon (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Suk, Myung-Jin (Department of Materials and Metallurgical Engineering, Kangwon National University)
Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Journal of Powder Materials / v.22, no.5, 2015 , pp. 362-366 More about this Journal
Abstract
The effect of sublimable vehicle composition in the camphor-naphthalene system on the pore structure of porous Cu-Ni alloy is investigated. The CuO-NiO mixed slurries with hypoeutectic, eutectic and hypereutectic compositions are frozen into a mold at $-25^{\circ}C$. Pores are generated by sublimation of the vehicles at room temperature. After hydrogen reduction at $300^{\circ}C$ and sintering at $850^{\circ}C$ for 1 h, the green body of CuO-NiO is completely converted to porous Cu-Ni alloy with various pore structures. The sintered samples show large pores which are aligned parallel to the sublimable vehicle growth direction. The pore size and porosity decrease with increase in powder content due to the degree of powder rearrangement in slurry. In the hypoeutectic composition slurry, small pores with dendritic morphology are observed in the sintered Cu-Ni, whereas the specimen of hypereutectic composition shows pore structure of plate shape. The change of pore structure is explained by growth behavior of primary camphor and naphthalene crystals during solidification of camphor-naphthalene alloys.
Keywords
Porous Cu-Ni; Freeze-drying process; Sublimable vehicle composition; Pore structure;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. J. Suk and Y. S. Kwon: J. Korean Powder Metall. Inst., 8 (2001) 215 (Korean).
2 J. Banhart: Prog. Mater. Sci., 46 (2001) 559.   DOI
3 T. Ohji and M. Fukushima: Intern. Mater. Rev., 57 (2012) 115.   DOI
4 H. Nakajima: Prog. Mater. Sci., 52 (2007) 1091.   DOI
5 T. Fukasawa, M. Ando, T. Ohji and S. Kanzaki: J. Am. Ceram. Soc., 84 (2001) 230.   DOI
6 K. Araki and J. W. Halloran: J. Am Ceram. Soc., 88 (2005) 1108.   DOI
7 S.-T. Oh, W. Lee, S.-Y. Chang and M.-J. Suk: Res. Chem. Interm., 40 (2014) 2495.   DOI
8 B.-H. Yoon, W.-Y. Choi, H.-E. Kim, J.-H. Kim and Y.-H. Koh: Scr. Mater., 58 (2008) 537.   DOI
9 B.-H. Yoon, E.-J. Lee, H.-E. Kim and Y.-H. Koh: J. Am Ceram. Soc., 90 (2007) 1753.   DOI
10 N.-Y. Kwon and S.-T. Oh: J. Korean Powder Metall. Inst., 19 (2012) 259 (Korean).   DOI
11 S.-T. Oh, Y.D. Kim and M.-J. Suk: Mater. Lett., 139 (2015) 268.   DOI
12 K. Araki and J.W. Halloran: J. Am Ceram. Soc., 87 (2004) 2014.
13 P.M. Robinson, H. J. Rosell and H. G. Scott: Mol. Cryst. Liq. Cryst., 10 (1970) 61.   DOI
14 M.-J. Suk and K. Leonartz: J. Crystal Growth, 213 (2000) 141.   DOI
15 G. Fierro, M. Lojacono, M. Inversi, P. Porta, R. Lavecchia and F. Cioci: J. Catal., 148 (1994) 709.   DOI
16 B. Jankovi , B. Adnadevi and S. Mentus: Thermoch. Acta, 456 (2007) 48.   DOI
17 S. Deville, E. Maire, G. Bernard-Granger, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup and C. Guizard: Nature Mater., 8 (2009) 966.   DOI
18 L. M. Fabietti and R. Trivedi: Metall. Trans. A, 22A (1991) 1249.