• 제목/요약/키워드: porcine liver

검색결과 88건 처리시간 0.023초

Hepatic microRNAome reveals potential microRNA-mRNA pairs association with lipid metabolism in pigs

  • Liu, Jingge;Ning, Caibo;Li, Bojiang;Li, Rongyang;Wu, Wangjun;Liu, Honglin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권9호
    • /
    • pp.1458-1468
    • /
    • 2019
  • Objective: As one of the most important metabolic organs, the liver plays vital roles in modulating the lipid metabolism. This study was to compare miRNA expression profiles of the Large White liver between two different developmental periods and to identify candidate miRNAs for lipid metabolism. Methods: Eight liver samples were collected from White Large of 70-day fetus (P70) and of 70-day piglets (D70) (with 4 biological repeats at each development period) to construct sRNA libraries. Then the eight prepared sRNA libraries were sequenced using Illumina next-generation sequencing technology on HiSeq 2500 platform. Results: As a result, we obtained 346 known and 187 novel miRNAs. Compared with the D70, 55 down- and 61 up-regulated miRNAs were shown to be significantly differentially expressed (DE). Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analysis indicated that these DE miRNAs were mainly involved in growth, development and diverse metabolic processes. They were predicted to regulate lipid metabolism through adipocytokine signaling pathway, mitogen-activated protein kinase, AMP-activated protein kinase, cyclic adenosine monophosphate, phosphatidylinositol 3 kinase/protein kinase B, and Notch signaling pathway. The four most abundantly expressed miRNAs were miR-122, miR-26a and miR-30a-5p (miR-122 only in P70), which play important roles in lipid metabolism. Integration analysis (details of mRNAs sequencing data were shown in another unpublished paper) revealed that many target genes of the DE miRNAs (miR-181b, miR-145-5p, miR-199a-5p, and miR-98) might be critical regulators in lipid metabolic process, including acyl-CoA synthetase long chain family member 4, ATP-binding casette A4, and stearyl-CoA desaturase. Thus, these miRNAs were the promising candidates for lipid metabolism. Conclusion: Our study provides the main differences in the Large White at miRNA level between two different developmental stages. It supplies a valuable database for the further function and mechanism elucidation of miRNAs in porcine liver development and lipid metabolism.

Cloning of porcine chemerin, ChemR23 and GPR1 and their involvement in regulation of lipogenesis

  • Huang, Jianfeng;Zhang, Jian;Lei, Ting;Chen, Xiaodong;Zhang, Yan;Zhou, Lulu;Yu, An;Chen, Zhilong;Zhou, Ronghua;Yang, Zaiqing
    • BMB Reports
    • /
    • 제43권7호
    • /
    • pp.491-498
    • /
    • 2010
  • Chemerin is a novel adipokine which is abundant in adipose tissue to promote adipocyte differentiation and with significant relativity to BMI and insulin sensitivity. We report here the molecular characterization of porcine chemerin and its receptors ChemR23 and GPR1, as well as their transcriptional regulation during lipogenesis. Chemerin was mainly expressed in liver, intestine, kidney and adipose tissue, consistent with the expression pattern of GPR1, but not ChemR23, which was predominantly present in spleen and temperately in adipose tissue. We further investigated the lipogenesis-related transcriptional activation of $PPAR{\gamma}$ and KLF15 on chemerin and its receptors. The data showed that KLF15, but not $PPAR{\gamma}$, can up-regulate the mRNA level of chemerin, ChemR23 and GPR1, which was consistent with the results of luciferase assay that confirmed the effect of KLF15 on ChemR23 promoter. Taken together, our data provide basic molecular information for the further investigation on the function of chemerin in lipogenesis.

Role of IFNLR1 gene in PRRSV infection of PAM cells

  • Qin, Ming;Chen, Wei;Li, Zhixin;Wang, Lixue;Ma, Lixia;Geng, Jinhong;Zhang, Yu;Zhao, Jing;Zeng, Yongqing
    • Journal of Veterinary Science
    • /
    • 제22권3호
    • /
    • pp.39.18-39.18
    • /
    • 2021
  • Background: Interferon lambda receptor 1 (IFNLR1) is a type II cytokine receptor that clings to interleukins IL-28A, IL29B, and IL-29 referred to as type III IFNs (IFN-λs). IFN-λs act through the JAK-STAT signaling pathway to exert antiviral effects related to preventing and curing an infection. Although the immune function of IFN-λs in virus invasion has been described, the molecular mechanism of IFNLR1 in that process is unclear. Objectives: The purpose of this study was to elucidate the role of IFNLR1 in the pathogenesis and treatment of porcine reproductive and respiratory syndrome virus (PRRSV). Methods: The effects of IFNLR1 on the proliferation of porcine alveolar macrophages (PAMs) during PRRSV infection were investigated using interference and overexpression methods. Results: In this study, the expressions of the IFNLR1 gene in the liver, large intestine, small intestine, kidney, and lung tissues of Dapulian pigs were significantly higher than those in Landrace pigs. It was determined that porcine IFNLR1 overexpression suppresses PRRSV replication. The qRT-PCR results revealed that overexpression of IFNLR1 upregulated antiviral and IFN-stimulated genes. IFNLR1 overexpression inhibits the proliferation of PAMs and upregulation of p-STAT1. By contrast, knockdown of IFNLR1 expression promotes PAMs proliferation. The G0/G1 phase proportion in IFNLR1-overexpressing cells increased, and the opposite change was observed in IFNLR1-underexpressing cells. After inhibition of the JAK/STAT signaling pathway, the G2/M phase proportion in the IFNLR1-overexpressing cells showed a significant increasing trend. In conclusion, overexpression of IFNLR1 induces activation of the JAK/STAT pathway, thereby inhibiting the proliferation of PAMs infected with PRRSV. Conclusion: Expression of the IFNLR1 gene has an important regulatory role in PRRSV-infected PAMs, indicating it has potential as a molecular target in developing a new strategy for the treatment of PRRSV.

대장균에서 발현된 인간 Cytochrome P450 1A1과 Rat NADPH-P450 Reductase와의 Fusion Protein의 효소 특성 연구 (Enzymatic Properties of a Fusion Protein between Human Cytochrome P450 1A1 and Rat NADPH-P450 Reductase Expressed in Escherichia Coli)

  • 천영진;정태천;이현걸;한상섭;노정구
    • Toxicological Research
    • /
    • 제12권2호
    • /
    • pp.155-161
    • /
    • 1996
  • The enzymatic properties for NADPH-P450 reductase domain of a fusion protein between human cytochrome P450 1A1 and rat NADPH-P450 reductase expressed in Escherichia coli were investigated. The fusion plasmid pCW/1A1OR-expressed E. coli membrane showed high NADPH-cytochrome c reductase activity ($830.1\pm 85.8 nmol\cdot min^{-1}\cdot mg protein^{-1}$), while pCW control vector and P 450 1A1 expression vector pCW/1A1 showed relatively quite low activity ($4.35\pm 0.49, 3.27\pm 0.50 nmol\cdot min^{-1}\cdot mg protein^{-1}$, respectively). The kinetic curves for NADPH-cytochrome c reductase followed typical Michaelis-Menten kinetics. The $K_{max}$ and $V_{max}$ for NADPH-dependent reductase activity were $8.24\pm 2.61\mu $and $817.9\pm 60.8 nmol\cdot min^{-1}\cdot mg protein^{-1}$, respectively, whereas those for cytochrome c-dependent reductase activity were $19.97\pm 2.86\mu M$ and $1303.5\pm 67.1 nmol\cdot min^{-1}\cdot mg protein^{-1}$. The reductase activities were also compared with those of rat, porcine and human liver microsomes. The activity of pCW/ 1A1OR-expressed E. coli membrane was 15.2-fold higher than that of rat liver microsome. Treatment with benzo(a)pyrene, 7-ethoxyresorufin and $\alpha$-naphthofiavone which are known as specific substrates or inhibitor for human P450 1A1 increased NADPH-cytochrome c reductase activity of fusion protein in E. coli membrane dose-dependently. These results demonstrate that the membrane topology of fused enzyme may be important for activity of its NADPH-P450 reductase domain.

  • PDF

Cyclodextrin의 사용과 pH의 변화를 이용한 Levofloxacin 생산 증대 연구

  • 문지숙;노윤숙;오선영;장성재;임상민;김동일
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.662-665
    • /
    • 2001
  • PLE를 이용한 levofloxacin의 생산에서 기질 150 mM 사용의 경우 두배의 몰농도 로 ${\alpha}-CD$를 사용하여 산물의 생산량을 3.7 배까지 증가시킬 수 있었다. 그러나 이 경우 ${\alpha}-CD$의 사용량이 많아 경제성이 떨어지는 단점이 있다. 이에 같은 몰농도로 ${\alpha}-CD$를 사용하고 pH에 변화를 주어 용해도를 향상시켜 보았다. 기질 100 mM의 경우 pH 5.6에서 같은 몰농도의 ${\alpha}-CD$를 사용한 경우 ${\alpha}-CD$를 사용하지 않은 것에 비해 4.4배의 수율의 증대가 있었다.

  • PDF

Oligosaccharide-Linked Acyl Carrier Protein, a Novel Transmethylase Inhibitor, from Porcine Liver Inhibits Cell Growth

  • Seo, Dong-Wan;Kim, Yong-Kee;Cho, Eun-Jung;Han, Jeung-Whan;Lee, Hoi-Young;Hong, Sungyoul;Lee, Hyang-Woo
    • Archives of Pharmacal Research
    • /
    • 제25권4호
    • /
    • pp.463-468
    • /
    • 2002
  • We have previously reported on the identification of the endogenous transmethylation inhibitor oligosaccharide-linked acyl carrier protein (O-ACP), In this study, the role of the transmethylation reaction on cell cycle progression was evaluated using various transmethylase inhibitors, including O-ACP. O-ACP significantly inhibited the growth of various cancer cell lines, including NIH3T3, ras-transformed NIH3T3, MDA-MB-231, HT-1376, and AGS. In addition, exposure of ras-transformed NIH3T3 to O-ACP caused cell cycle arrest at the $G_0/G_1$ phase, which led to a decrease in cells at the S phase, as determined by flow cytometry. In contrast, transmethylase inhibitors did not affect the expression of $p21^{WAF1/Cip1}$, a well known inhibitor of cyclin dependent kinase, indicating that the cell cycle arrest by transmethylase inhibitors might be mediated by a $p21^{WAF1/Cip1}$-independent mechanism. Therefore, O-ACP, a novel transmethylase inhibitor, could be a useful tool for elucidating the novel role of methylation in cell proliferation and cell cycle progression.

Characterization of Phosphoinositide-3-kinase, Class 3 (PIK3C3) Gene and Association Tests with Quantitative Traits in Pigs

  • Kim, J.H.;Choi, B.H.;Lim, H.T.;Park, E.W.;Lee, S.H.;Seo, B.Y.;Cho, I.C.;Lee, J.G.;Oh, S.J.;Jeon, J.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권12호
    • /
    • pp.1701-1707
    • /
    • 2005
  • This study deals with the characterization of porcine PIK3C3 and association tests with quantitative traits. PIK3C3 belongs to the class 3 PI3Ks that participate in the regulation of hepatic glucose output, glycogen synthase, and antilipolysis in typical insulin target cells such as those in the such as liver, muscle system, and fat. On the analysis of full-length mRNA sequence, the length of the PIK3C3 CDS was recorded as 2,664 bps. As well, nucleotide and amino acid identities between human and pig subjects were 92% and 99%, respectively. Five SNPs were detected over 5 exons. We performed genotyping by using a SNP C2604T on exon24 for 145 F$_2$ animals (from a cross between Korean native boars and Landrace sows) by PCR-RFLP analysis with Hpy8I used to investigate the relationship between growth and fat depot traits. In the total association analysis, which doesn' consider transmission disequilibrium, the SNP showed a significant effect (p<0.05) on body weight and carcass fat at 30 weeks of age as well as a highly significant effect (p<0.01) on back fat. In an additional sib-pair analysis, C allele still showed positive and significant effects (p<0.05) on back fat thickness and carcass fat. Moreover, the effects of C allele on the means of within-family components for carcass fat and back fat were estimated as 2.76 kg and 5.07 mm, respectively. As a result, the SNP of porcine PIK3C3 discovered in this study could be utilized as a possible genetic marker for the selection of pigs that possess low levels of back fat and carcass fat at the slaughter weight.

가축의 fumonisin 중독증에 대한 최근 연구 동향 : 종설 (The current status of fumonisin toxicosis in domestic animals: A review)

  • 임채웅;임병무
    • 대한수의학회지
    • /
    • 제35권2호
    • /
    • pp.405-416
    • /
    • 1995
  • 말의 뇌화연증(equine leukoencephalomalacia)과 돼지의 폐수종(porcine pulmonary edema)은 Fusarium에 오염된 옥수수로 인하여 발생되는 것으로 추정되어 왔다. 1988년에 F moniliforme에서 2차 대사산물인 fumonisin $B_1(FB_1)$이 동정되면서 오염된 옥수수와 순수 분리된 $FB_1$으로 두질병이 실험적으로 재현되었고, 말과 돼지 이외의 다른 가축에 대해서도 독성 연구가 진행되고 있다. fumonisins(FBs)는 모든 종에서 간에 독성을 나타내나 종에 따라 주요 독성 장기가 각기 다름이 밝혀지고 있다. FB의 독성 기전에 대해서는 잘 알려지지 않았으나 FB가 sphingolipid 생성과정을 차단함으로써 장기 및 혈중에 sphinganine(SA) : sphingosine(SO)를 증가시키는 것으로 알려졌다. 이는 증가된 SA : SO가 FB 독성의 진단기준이 될 수 있음을 시사하는 것이다. 최근 진행 중인 연구에 의하면, 저용량의 $FB_1$ 급식 투여가 돼지에서 혈중 입자(blood-born particle)에 대한 폐혈관 대식 세포(pulmonary intravascular macrophage)의 탐식 능력을 저하시켜, 세균 감염에 대한 감수성이 증가될 수 있음을 시사하고 있다. Fusarium 속균은 전세계적으로 생산되는 옥수수에서 발생되고 있으며, 우리나라는 사료에 사용되는 옥수수의 절대량을 수입에 의존하고 있는 점을 고려할 때, 허용기준 및 무해용량 등에 대한 관리가 절실하다. 이 논문에서는 최근 연구된 FB에 의한 가축 독성에 대하여 기술하고자 한다.

  • PDF

전북지역 도축 출하돈 병변 조사 (Survey on the gross lesions of slaughtered pigs in Jeonbuk area, Korea)

  • 임미나;백귀정;유기홍;조현웅
    • 한국동물위생학회지
    • /
    • 제38권2호
    • /
    • pp.89-94
    • /
    • 2015
  • Respiratory disease in pigs is common in modern pork production worldwide and is often referred to as porcine respiratory disease complex (PRDC). PRDC is polymicrobial in nature, and results from infection with various combinations of primary and secondary respiratory pathogens. The control of swine respiratory disease requires an understanding of the interactions between the organisms that can cause this illness, the pig and management of the environment. This study was carried out to investigate the lesion of red internal organs in slaughtered pigs and provided assistant data for pig farms. A total of 900 lung samples, 45 farms were collected randomly from slaughtered pigs in Jeonbuk province from April to December in 2014. Gross lesions such as swine enzootic pneumonia (SEP), pleuritis, pleuropneumonia, pericarditis, liver white spots were examined for the pigs. Overall prevalence of SEP was 70.8%. According to season, the incidence occurred higher in summer than winter, fall and spring. The mean SEP score was 1.4, the highest incidence occurred in fall. The prevalence of pleuropneumonia, pleuritis, pericarditis, and milk spot was 26.1%, 71.4%, 2.8%, 21.6%, respectively. In the detection of pathogens, PRRS was not detected, PCV2 was positive in 87.6%.

ASCL2 Gene Expression Analysis and Its Association with Carcass Traits in Pigs

  • Cheng, H.C.;Zhang, F.W.;Deng, C.Y.;Jiang, C.D.;Xiong, Y.Z.;Li, F.E.;Lei, M.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권10호
    • /
    • pp.1485-1489
    • /
    • 2007
  • Achaete-scute like 2 (ASCL2) gene encodes a member of the basic helix-loop-helix transcription factor which is essential for the maintenance of proliferating trophoblasts during placental development. ASCL2 gene preferentially expresses the maternal allele in the mouse. However, it escapes genomic imprinting in the human. In this study, the complete open reading frame consisting of 193 amino acids of ASCL2 gene was obtained. Sequence analysis indicated that a C-G mutation existed in the 3' region between Meishan and Large White pigs. The polymorphism was used to determine the monoallelic or biallelic expression with RT-PCR-RFLP in pigs of Large $White{\times}Meishan$ $F_1$ hybrids. Imprinting analysis indicated that the ASCL2 gene expression was biallelic in all the tested tissues (heart, liver, spleen, lung, kidney, stomach, small intestine, skeletal muscle, fat, uterus, ovary and pituitary). PCR-RFLP was used to detect the polymorphism in 270 pigs of the "$Large\;White{\times}Meishan$" $F_2$ resource population. The statistical results showed highly significant associations of the genotypes and fat meat percentage (FMP), lean meat percentage (LMP) and ratio of lean to fat (RLF) (p<0.01), and significant associations of the genotypes and loin eye area (LEA) and internal fat rate (IFR) (p<0.05).