• Title/Summary/Keyword: porcine fibroblasts

Search Result 55, Processing Time 0.017 seconds

Growth Factors Supplementation in Culture Medium Leads to Active Proliferation of Porcine Fibroblasts

  • Kim, Bella;Ko, Na-Young;Hwang, Seong-Soo;Im, Gi-Sun;Kim, Dong-Hoon;Park, Jin-Ki;Ryoo, Zae-Young;Oh, Keon-Bong
    • Reproductive and Developmental Biology
    • /
    • v.35 no.3
    • /
    • pp.301-306
    • /
    • 2011
  • Fibroblasts of large animals are easy to isolate and to maintain in vitro culture. Thus, these cells are extensively applied to donor cell for somatic cell nuclear transfer, and to substrate cells to generate induced pluripotent stem cells after transfection of requited genes to be essentially required for direct reprogramming. However, limited mitotic activity of fibroblasts to differentiate along a terminal lineage becomes restrictive for their versatile application. Recently, commercial culture medium and systems developed for primary cells are provided by manufactures. In this study, we examined whether one of the systems developed for primary fibroblasts of human are effective on porcine ear skin fibroblasts. To this end, we performed proliferation assay after five days culture in vitro of porcine fibroblasts in medium DMEM, which is generally used for fibroblasts culture, and medium M106 for human dermal fibroblasts, supplemented with various concentrations of FBS and LSGS contained mainly growth factors, respectively. Consequence was that presence of 15% FBS and 0.1 ${\times}$ concentrations of LSGS in DMEM showed most active proliferation of porcine fibroblasts.

Production of homozygous klotho knockout porcine embryos cloned from genome-edited porcine fibroblasts

  • Lee, Sanghoon;Jung, Min Hee;Oh, Hyun Ju;Koo, Ok Jae;Park, Se Chang;Lee, Byeong Chun
    • Journal of Embryo Transfer
    • /
    • v.31 no.3
    • /
    • pp.179-183
    • /
    • 2016
  • Even though klotho deficiency in mice exhibits multiple aging-like phenotypes, studies using large animal models such as pigs, which have many similarities to humans, have been limited due to the absence of cell lines or animal models. The objective of this study was to generate homozygous klotho knockout porcine cell lines and cloned embryos. A CRISPR sgRNA specific for the klotho gene was designed and sgRNA (targeting exon 3 of klotho) and Cas9 RNPs were transfected into porcine fibroblasts. The transfected fibroblasts were then used for single cell colony formation and 9 single cell-derived colonies were established. In a T7 endonuclease I mutation assay, 5 colonies (#3, #4, #5, #7 and #9) were confirmed as mutated. These 5 colonies were subsequently analyzed by deep sequencing for determination of homozygous mutated colonies and 4 (#3, #4, #5 and #9) from 5 colonies contained homozygous modifications. Somatic cell nuclear transfer was performed to generate homozygous klotho knockout cloned embryos by using one homozygous mutation colony (#9); the cleavage and blastocyst formation rates were 72.0% and 8.3%, respectively. Two cloned embryos derived from a homozygous klotho knockout cell line (#9) were subjected to deep sequencing and they showed the same mutation pattern as the donor cell line. In conclusion, we produced homozygous klotho knockout porcine embryos cloned from genome-edited porcine fibroblasts.

Disruption of the Myostatin Gene in Porcine Primary Fibroblasts and Embryos Using Zinc-Finger Nucleases

  • Huang, Xian-Ju;Zhang, Hong-Xiao;Wang, Huili;Xiong, Kai;Qin, Ling;Liu, Honglin
    • Molecules and Cells
    • /
    • v.37 no.4
    • /
    • pp.302-306
    • /
    • 2014
  • Myostatin represses muscle growth by negatively regulating the number and size of muscle fibers. Myostatin loss-of-function can result in the double-muscling phenotype and increased muscle mass. Thus, knockout of myostatin gene could improve the quality of meat from mammals. In the present study, zinc finger nucleases, a useful tool for generating gene knockout animals, were designed to target exon 1 of the myostatin gene. The designed ZFNs were introduced into porcine primary fibroblasts and early implantation embryos via electroporation and microinjection, respectively. Mutations around the ZFNs target site were detected in both primary fibroblasts and blastocysts. The proportion of mutant fibroblast cells and blastocyst was 4.81% and 5.31%, respectively. Thus, ZFNs can be used to knockout myostatin in porcine primary fibroblasts and early implantation embryos.

In Vitro Development of Interspecies Nuclear Transfer Embryos using Porcine Oocytes with Goat and Rabbit Somatic Cells

  • Quan, Yan Shi;Naruse, Kenji;Choi, Su-Min;Kim, Myung-Youn;Han, Rong-Xun;Park, Chang-Sik;Jin, Dong-Il
    • Reproductive and Developmental Biology
    • /
    • v.32 no.4
    • /
    • pp.249-253
    • /
    • 2008
  • Interspecies somatic cell nuclear transfer (iSCNT) is a valuable tool for studying the interactions between an oocyte and somatic nucleus. The object of this study was to investigate the developmental competence of in vitro-matured porcine oocytes after transfer of the somatic cell nuclei of 2 different species (goat and rabbit). Porcine cumulus oocytes were obtained from the follicles of ovaries and matured in TCM-199. The reconstructed embryos were electrically fused with 2 DC pulses of 1.1kV/cm for $30{\mu}s$ 0.3M mannitol medium. The activated cloned embryos were cultured in porcine zygote medium-3 (PZM-3), mSOF or RDH medium for 7 days. The blastocyst formation rate of the embryos reconstructed from goat or rabbit fetal fibroblasts was significantly lower than that of the embryos reconstructed from porcine fetal fibroblast cells. However, a significantly higher number of embryos reconstructed from goat or rabbit fetal fibroblasts cultured in mSOF or RDH, respectively, developed to the morular stage than those cultured in PZM-3. These results suggest that goat and bovine fetal fibroblasts were less efficacious than porcine-porcine cloned embryos and that culture condition could be an important factor in iSCNT. The lower developmental potential of goat-porcine and porcine-bovine cloned embryos may be due to incompatibility between the porcine oocyte cytoplasm and goat and bovine somatic nuclei.

Efficient Culture of Porcine Fetal Fibroblasts (돼지 태아 섬유아 세포의 효과적인 배양)

  • Kim, H.M.;Lee, S.M.;Park, H.Y.;Moon, S.J.;Kang, M.J.
    • Journal of Embryo Transfer
    • /
    • v.22 no.3
    • /
    • pp.179-184
    • /
    • 2007
  • Culture method of somatic cells is one of the important factors in the production of transgenic pigs by somatic cell nuclear transfer. In this study, we established an efficient culture method of porcine fetal fibroblasts. Porcine fetal fibroblasts were isolated from 33-day-old fetuses. The proliferation of porcine fetal fibroblasts was analyzed by different serum types and culture media. The cultures in medium supplied 15% ES screened FBS showed faster increase in cell number than 15% FBS. Also, fetal fibroblasts have been propagated continuously for $7{\sim}8$ passages in ES modified DMEM and DMEM medium. We transfected $PGK-neo^r$ vector (pKJ2) into porcine fetal fibroblasts to estimate colony formation in this culture condition. The formation of colonies was confirmed in the medium containing $300\;{\mu}g/ml$ G418 at 12 day. These data show that this culture system can be used screening of porcine somatic cells transfected transgene.

Quantitative analysis of mitochondrial DNA in porcine-mouse cloned embryos

  • Hyeonyeong Shin;Soyeon Kim;Myungyoun Kim;Jaeeun Lee;Dongil Jin
    • Journal of Animal Science and Technology
    • /
    • v.65 no.4
    • /
    • pp.767-778
    • /
    • 2023
  • The aim of the research is to identify that porcine oocytes can function as recipients for interspecies cloning and have the ability to develop to blastocysts. Furthermore each mitochondrial DNA (mtDNA) in interspecises cloned embryos was analyzed. For the study, mouse-porcine and porcine-porcine cloned embryos were produced with mouse fetal fibroblasts (MFF) and porcine fetal fibroblasts (PFF), respectively, introduced as donor cells into enucleated porcine oocytes. The developmental rate and cell numbers of blastocysts between intraspecies porcine-porcine and interspecies mouse-porcine cloned embryos were compared and real-time polymerase chain reaction (PCR) was performed for the estimate of mouse and porcine mtDNA copy number in mouse-porcine cloned embryos at different stages.There was no significant difference in the developmental rate or total blastocyst number between mouse-porcine cloned embryos and porcine-porcine cloned embryos (11.1 ± 0.9%, 25 ± 3.5 vs. 10.1 ± 1.2%, 24 ± 6.3). In mouse-porcine reconstructed embryos, the copy numbers of mouse somatic cell-derived mtDNA decreased between the 1-cell and blastocyst stages, whereas the copy number of porcine oocyte-derived mtDNA significantly increased during this period, as assessed by real-time PCR analysis. In our real-time PCR analysis, we improved the standard curve construction-based method to analyze the level of mtDNA between mouse donor cells and porcine oocytes using the copy number of mouse beta-actin DNA as a standard. Our findings suggest that mouse-porcine cloned embryos have the ability to develop to blastocysts in vitro and exhibit mitochondrial heteroplasmy from the 1-cell to blastocyst stages and the mouse-derived mitochondria can be gradually replaced with those of the porcine oocyte in the early developmental stages of mouse-porcine cloned embryos.

Screening System Establishment for Potential Anti-wrinkle Agents Using Human Fibroblast Elastase (엘라스타제를 이용한 주름개선 후보물질 검색 시스템의 구축)

  • Oh, Mi-Hee;Lee, Ju-Eun;Kim, Su-Yeon;Kim, So-Young;Park, Kyoung-Chan;Yun, Hye-Young;Baek, Kwang-Jin;Kwon, Nyoun-Soo;Kim, Dong-Seok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.35 no.1
    • /
    • pp.19-25
    • /
    • 2009
  • It has been reported that not only collagen but also elastin contribute to inhibit skin wrinkle formation. Ultraviolet (UV) radiation induces photo-aging on human skin. Because UV radiation increases elastase activity, it is thought that increased elastase activity could be the major reason for skin elasticity reduction and wrinkle formation by UV. In the present study to standardize elastase activity measuring system, purified elastases from porcine pancrease and human neutrophil, and cell extracts of normal human primary fibroblasts, 3T3 mouse fibroblasts, and CCD-25Sk human fibroblasts were used as various enzyme sources. Furthermore, elastase activities were compared according to concentrations of enzyme and substrate and incubation time. Phosphoramidon was used as a positive control to inhibit elastase activities of normal human primary fibroblasts and CCD-25Sk fibroblasts. However, it had no influence on the activity of porcine pancreatic elastase. Therefore, it is suggested that elastase used for testing anti-wrinkle agents should be selected carefully.

Optimization of Procedure for Efficient Gene Transfer into Porcine Somatic Cells with Lipofection

  • Kim, D.Y.;McElroy, S.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.5
    • /
    • pp.648-656
    • /
    • 2008
  • The objective of this study was to establish conditions for transfection of a foreign gene into somatic cells using cationic lipid reagents and to evaluate the effects of transfection on in vitro development of somatic cell nuclear transfer (SCNT) embryos. Green fluorescent protein (GFP) gene was used as a foreign gene and a non-transfected somatic cell was utilized as a control karyoplast. Monolayers of porcine cells were established and subsequently transfected with a GFP-expressing gene (pEGFP-N1) using three types of transfection reagents (LipofectAMINE PLUS, FuGENE 6 or ExGen500). Donor cells used for SCNT included transfected fetal or adult fibroblasts and oviduct epithelial cells, either serum-fed or serum-starved. Oocytes matured in vitro for 42 h were reconstructed with either transfected or non-transfected porcine somatic cells by electric fusion and activation using a single DC pulse of 1.8 kV/cm for $30{\mu}s$ in $Ca^{2+}$ and $Mg^{2+}-containing$ 0.26 M mannitol solution. Reconstructed oocytes were subsequently cultured in NCSU-23 medium for 168 h and the developmental competence and cell number in blastocyst were compared. There were no significant differences (P>0.05) in fusion, cleavage rates or development to the blastocyst stage between non-transfected, transfected, serum-fed and serum-starved cells. However, the rates of GFP-expressing blastocysts were higher in the FuGENE 6 group (71.4%) among transfection reagents and in the fetal fibroblasts group (70.4%) for donor cells. These results indicate that fetal fibroblasts transfected with FuGENE 6 can be used as donor cells for porcine SCNT and that GFP gene can be safely used as a marker of foreign genes in porcine transgenesis.

Production of porcine fibroblasts carrying a vector enforced specific expression of CD73 to endothelial cells (돼지 혈관내피세포 특이적 CD73 발현 벡터가 도입된 돼지 섬유아세포 생산)

  • Oh, Keon Bong;Lee, Haesun;Hwang, Seongsoo;Ock, Sun-A;Chung, Hak-Jae;Byun, Sung June;Lee, Poongyeon;Im, Gi-Sun
    • Journal of Embryo Transfer
    • /
    • v.31 no.3
    • /
    • pp.161-168
    • /
    • 2016
  • Nucleotide metabolism in endothelium is variable between different species. Recent studies demonstrated that this variability could contribute coagulation dysfunction, even though organs of the alpha 1,3-galactosyltransferase gene knockout pig were transplanted into the primate. CD73 (ecto-5'-nucelotidase) is an enzyme at cell surface catalyzing the hydrolysis of adenosine triphosphate to adenosine, which plays role on a substance for anti-inflammatory and anti-coagulant. Thus, overexpression of CD73 in endothelial cells of the pig is considered as an approach to reduce coagulopathy. In this study, we constructed a human CD73 expression vector under control of porcine Icam2 promoter (pIcam2-hCD73), which is expressed specifically at endothelial cells, and of CMV promoter as a control (CMV-CD73). First, we transfected the CMV-CD73 vector into HEK293 cells, and then confirmed CD73 expression at cell surface by flow cytometry analysis. Next, we transfected the pIcma2-CD73 and CMV-CD73 vectors into primary porcine fibroblasts and endothelial cells. Consequence was that the pIcma2-CD73 vector was expressed only at the porcine endothelial cells, meaning that the pIcam2 promoter lead to endothelial cell-specific expression of CD73 in vitro. Finally, we nucleofected the pIcam2-hCD73 vector into passage 3 fibroblasts, and enforced hygromycin selection of 400mg/ml. We were able to obtain forty three colonies harboring pIcam2-CD73 to provide donor cells for transgenic cloned porcine production.