Growth Factors Supplementation in Culture Medium Leads to Active Proliferation of Porcine Fibroblasts

  • Kim, Bella (Animal Biotechnology Division, National Institute of Animal Science, RDA) ;
  • Ko, Na-Young (Animal Biotechnology Division, National Institute of Animal Science, RDA) ;
  • Hwang, Seong-Soo (Animal Biotechnology Division, National Institute of Animal Science, RDA) ;
  • Im, Gi-Sun (Animal Biotechnology Division, National Institute of Animal Science, RDA) ;
  • Kim, Dong-Hoon (Animal Biotechnology Division, National Institute of Animal Science, RDA) ;
  • Park, Jin-Ki (Animal Biotechnology Division, National Institute of Animal Science, RDA) ;
  • Ryoo, Zae-Young (School of Life Science and Biotechnology, Kyungpook National University) ;
  • Oh, Keon-Bong (Animal Biotechnology Division, National Institute of Animal Science, RDA)
  • 투고 : 2011.08.29
  • 심사 : 2011.09.05
  • 발행 : 2011.09.30

초록

Fibroblasts of large animals are easy to isolate and to maintain in vitro culture. Thus, these cells are extensively applied to donor cell for somatic cell nuclear transfer, and to substrate cells to generate induced pluripotent stem cells after transfection of requited genes to be essentially required for direct reprogramming. However, limited mitotic activity of fibroblasts to differentiate along a terminal lineage becomes restrictive for their versatile application. Recently, commercial culture medium and systems developed for primary cells are provided by manufactures. In this study, we examined whether one of the systems developed for primary fibroblasts of human are effective on porcine ear skin fibroblasts. To this end, we performed proliferation assay after five days culture in vitro of porcine fibroblasts in medium DMEM, which is generally used for fibroblasts culture, and medium M106 for human dermal fibroblasts, supplemented with various concentrations of FBS and LSGS contained mainly growth factors, respectively. Consequence was that presence of 15% FBS and 0.1 ${\times}$ concentrations of LSGS in DMEM showed most active proliferation of porcine fibroblasts.

키워드

참고문헌

  1. Ahn KS, Kim YJ, Kim M, Lee BH, Heo SY, Kang MJ, Kang, YK, Lee JW, Lee KK, Kim JH, et al. (2011): Resurrection of an alpha-1,3-galactosyltransferase gene-targeted miniature pig by recloning using postmortem ear skin fibroblasts. Theriogenology 75:933-939. https://doi.org/10.1016/j.theriogenology.2010.11.001
  2. Alt E, Yan Y, Gehmert S, Song YH, Altman A, Vykoukal D, Bai X (2011): Fibroblasts share mesenchymal phenotypes with stem cells, but lack their differentiation and colony-forming potential. Biol Cell 103:197-208. https://doi.org/10.1042/BC20100117
  3. Bayreuther K, Rodemann HP, Hommel R, Dittmann K, Albiez M, Francz PI (1988): Human skin fibroblasts in vitro differentiate along a terminal cell lineage. Proc Natl Acad Sci USA 85:5112-5116. https://doi.org/10.1073/pnas.85.14.5112
  4. Campbell KH, McWhir J, Ritchie WA, Wilmut I (1996): Sheep cloned by nuclear transfer from a cultured cell line. Nature 380:64-66. https://doi.org/10.1038/380064a0
  5. Dai Y, Vaught TD, Boone J, Chen SH, Phelps CJ, Ball S, Monahan JA, Jobst PM, McCreath KJ, Lamborn AE et al. (2002): Targeted disruption of the alpha 1,3-galactosyltransferase gene in cloned pigs. Nat Biotechnol 20:251-255. https://doi.org/10.1038/nbt0302-251
  6. Dick IP, Scott RC (1992): Pig ear skin as an in-vitro model for human skin permeability. J Pharm Pharmacol 44: 640-645. https://doi.org/10.1111/j.2042-7158.1992.tb05485.x
  7. Dyce PW, Zhu H, Craig J, Li J (2004): Stem cells with multilineage potential derived from porcine skin. Biochem Biophys Res Commun 316:651-658. https://doi.org/10.1016/j.bbrc.2004.02.093
  8. Harper RA, Grove G (1979): Human skin fibroblasts derived from papillary and reticular dermis: differences in growth potential in vitro. Science 204: 526-527. https://doi.org/10.1126/science.432659
  9. Harrison S, Boquest A, Grupen C, Faast R, Guildolin A, Giannakis C, Crocker L, McIlfatrick S, Ashman R, Wengle J, et al. (2004): An efficient method for producing alpha (1,3)-galactosyltransferase gene knockout pigs. Cloning Stem Cells 6:327-331. https://doi.org/10.1089/clo.2004.6.327
  10. Huang HI, Chen SK, Ling QD, Chien CC, Liu HT, Chan SH (2010): Multilineage differentiation potential of fibroblast-like stromal cells derived from human skin. Tissue Eng Part A 16:1491-1501. https://doi.org/10.1089/ten.tea.2009.0431
  11. Jacobi U, Kaiser M, Toll R, Mangelsdorf S, Audring H, Otberg N, Sterry W, Lademann J (2007): Porcine ear skin: an in vitro model for human skin. Skin Res Technol 13: 19-24. https://doi.org/10.1111/j.1600-0846.2006.00179.x
  12. Lai L, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL, Im GS, Samuel M, Bonk A, Rieke A, Day BN, et al. (2002): Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295:1089-1092. https://doi.org/10.1126/science.1068228
  13. Lermen D, Gorjup E, Dyce PW, von Briesen H, Muller P (2010): Neuro-muscular differentiation of adult porcine skin derived stem cell-like cells. PLoS One 5:e8968.
  14. Lorenz K, Sicker M, Schmelzer E, Rupf T, Salvetter J, Schulz-Siegmund M, Bader A (2008): Multilineage differentiation potential of human dermal skin-derived fibroblasts. Exp Dermatol 17: 925-932. https://doi.org/10.1111/j.1600-0625.2008.00724.x
  15. McCreath KJ, Howcroft J, Campbell KH, Colman A, Schnieke AE, Kind AJ (2000): Production of genetargeted sheep by nuclear transfer from cultured somatic cells. Nature 405:1066-1069. https://doi.org/10.1038/35016604
  16. Orly J, Sato G (1979): Fibronectin mediates cytokinesis and growth of rat follicular cells in serumfree medium. Cell 17:295-305. https://doi.org/10.1016/0092-8674(79)90155-7
  17. Phelps CJ, Koike C, Vaught TD, Boone J, Wells KD, Chen SH, Ball S, Specht SM, Polejaeva IA, Monahan JA, et al. (2003): Production of alpha 1,3-galactosyltransferase- deficient pigs. Science 299:411-414. https://doi.org/10.1126/science.1078942
  18. Ramirez RD, Morales CP, Herbert BS, Rohde JM, Passons C, Shay JW, Wright WE (2001): Putative telomere- independent mechanisms of replicative aging reflect inadequate growth conditions. Genes Dev 15:398-403. https://doi.org/10.1101/gad.859201
  19. Ramsoondar JJ, Machaty Z, Costa C, Williams BL, Fodor WL, Bondioli KR (2003): Production of alpha 1,3-galactosyltransferase-knockout cloned pigs expressing human alpha 1,2-fucosylosyltransferase. Biol Reprod 69:437-445. https://doi.org/10.1095/biolreprod.102.014647
  20. Savion N, Lui GM, Laherty R, Gospodarowicz D (1981): Factors controlling proliferation and progesterone production by bovine granulosa cells in serum- free medium. Endocrinology 109:409-420. https://doi.org/10.1210/endo-109-2-409
  21. Simon GA, Maibach HI (2000): The pig as an experimental animal model of percutaneous permeation in man: qualitative and quantitative observationsan overview. Skin Pharmacol Appl Skin Physiol 13: 229-234. https://doi.org/10.1159/000029928
  22. Smith JR, Pereira-Smith OM, Schneider EL (1978): Colony size distributions as a measure of in vivo and in vitro aging. Proc Natl Acad Sci USA 75:1353-1356. https://doi.org/10.1073/pnas.75.3.1353
  23. Smith JR, Whitney RG (1980): Intraclonal variation in proliferative potential of human diploid fibroblasts: stochastic mechanism for cellular aging. Science 207:82-84. https://doi.org/10.1126/science.7350644
  24. Sorrell JM, Caplan AI (2004): Fibroblast heterogeneity: more than skin deep. J Cell Sci 117:667-675. https://doi.org/10.1242/jcs.01005
  25. Takahagi Y, Fujimura T, Miyagawa S, Nagashima H, Shigehisa T, Shirakura R, Murakami H (2005): Production of alpha 1,3-galactosyltransferase gene knockout pigs expressing both human decay-accelerating factor and N-acetylglucosaminyltransferase III. Mol Reprod Dev 71:331-338. https://doi.org/10.1002/mrd.20305
  26. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007): Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861-872. https://doi.org/10.1016/j.cell.2007.11.019
  27. Takahashi K, Yamanaka S (2006): Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663-676. https://doi.org/10.1016/j.cell.2006.07.024
  28. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007): In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318-324. https://doi.org/10.1038/nature05944
  29. West FD, Terlouw SL, Kwon DJ, Mumaw JL, Dhara SK, Hasneen K, Dobrinsky JR, Stice SL (2010): Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells Dev 19:1211-1220. https://doi.org/10.1089/scd.2009.0458
  30. Yu A, Matsuda Y, Takeda A, Uchinuma E, Kuroyanagi Y (2011): Effect of EGF and bFGF on fibroblast proliferation and angiogenic cytokine production from cultured dermal substitutes. J Biomater Sci Polym Ed. [Epub ahead of print] DOI:10.1163/092050- 611X580463.
  31. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz- Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, et al. (2007): Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917-1920. https://doi.org/10.1126/science.1151526
  32. Zhu H, Tamot B, Quinton M, Walton, J, Hacker RR, Li J (2004): Influence of tissue origins and external microenvironment on porcine foetal fibroblast growth, proliferative life span and genome stability. Cell Prolif 37:255-266. https://doi.org/10.1111/j.1365-2184.2004.00310.x