• 제목/요약/키워드: porcine embryonic development

검색결과 107건 처리시간 0.025초

Effect of 0.5 mM Dibutyryl cAMP on Meiotic Maturation during Different Incubation Time and Embryonic Development Following In Vitro Fertilization or Parthenogenetic Activation in Porcine Oocytes

  • Yu, Il-Jeoung
    • 한국수정란이식학회지
    • /
    • 제26권4호
    • /
    • pp.251-256
    • /
    • 2011
  • Presently, the effect of 0.5 mM dibutyryl cAMP (dbcAMP)-supplemented maturation medium during different incubation time on meiotic arrest (germinal vesicle) and resumption (metaphase II) of porcine oocytes and embryonic development of porcine oocytes following in vitro fertilization (IVF) or parthenogenetic activation (PA) was determined. Porcine cumulus oocyte complexes (COCs) were cultured in 0.5 mM dbcAMP for 17, 22, 27, or 42 h, and an additional 22 h without 0.5 mM dbcAMP. The nuclear status was examined at each time point. Oocytes cultured from 39~49 h displayed more than 80% meiotic resumption. More than 85 % of meiotic arrest was presented at 17~22 h. Oocytes were cultured for 22 h with 0.5 mM dbcAMP and additional 22 h without dbcAMP to assess developmental potential following IVF or PA. There were no significant differences in blastocyst rates among the dbcAMPIVF, IVF, dbcAMP-PA, and PA groups, although cleavage rate of IVF group was significantly higher than those of dbcAMP-PA, and PA groups. In conclusion, 0.5 mM dbcAMP influenced meiotic maturation of porcine oocytes depending on incubation time of oocyte, although embryonic development was not improved in both IVF and PA.

Cadmium exposure impairs porcine embryonic development by inducing oxidative stress and mitochondrial dysfunction

  • Min Ju Kim;Se‑Been Jeon;Hyo‑Gu Kang;Bong‑Seok Song;Bo‑Woong Sim;Sun‑Uk Kim;Pil‑Soo Jeong;Seong‑Keun Cho
    • 한국동물생명공학회지
    • /
    • 제39권1호
    • /
    • pp.48-57
    • /
    • 2024
  • Background: Cadmium (Cd) is toxic heavy metal that accumulates in organisms after passing through their respiratory and digestive tracts. Although several studies have reported the toxic effects of Cd exposure on human health, its role in embryonic development during preimplantation stage remains unclear. We investigated the effects of Cd on porcine embryonic development and elucidated the mechanism. Methods: We cultured parthenogenetic embryos in media treated with 0, 20, 40, or 60 µM Cd for 6 days and evaluated the rates of cleavage and blastocyst formation. To investigate the mechanism of Cd toxicity, we examined intracellular reactive oxygen species (ROS) and glutathione (GSH) levels. Moreover, we examined mitochondrial content, membrane potential, and ROS. Results: Cleavage and blastocyst formation rates began to decrease significantly in the 40 µM Cd group compared with the control. During post-blastulation, development was significantly delayed in the Cd group. Cd exposure significantly decreased cell number and increased apoptosis rate compared with the control. Embryos exposed to Cd had significantly higher ROS and lower GSH levels, as well as lower expression of antioxidant enzymes, compared with the control. Moreover, embryos exposed to Cd exhibited a significant decrease in mitochondrial content, mitochondrial membrane potential, and expression of mitochondrial genes and an increase in mitochondrial ROS compared to the control. Conclusions: We demonstrated that Cd exposure impairs porcine embryonic development by inducing oxidative stress and mitochondrial dysfunction. Our findings provide insights into the toxicity of Cd exposure on mammalian embryonic development and highlight the importance of preventing Cd pollution.

Molecular Characterization of Porcine DNA Methyltransferase I

  • Lee, Yu-Youn;Kang, Hye-Young;Min, Kwan-Sik
    • Reproductive and Developmental Biology
    • /
    • 제34권4호
    • /
    • pp.283-288
    • /
    • 2010
  • During normal early embryonic development in mammals, the global pattern of genomic DNA methylation undergoes marked. changes. The level of methylation is high in male and female gametes. Thus, we cloned the cDNA of the porcine DNA methyltransferase 1 (Dnmt1) gene to promote the efficiency of the generation of porcine clones. In this study, porcine Dnmt1 cDNA was sequenced, and Dnmt1 mRNA expression was detected by reverse transcription-polymerase reaction (RT-PCR) in porcine tissues during embryonic development. The porcine Dnmt1 cDNA sequence showed more homology with that of bovine than human, mouse, and rat. The complete sequence of porcine Dnmt1 cDNA was 4,774-bp long and consisted of an open reading frame encoding a protein of 1611 amino acids. The amino acid sequence of porcine DNMT1 showed significant homology with those of bovine (91%), human (88%), rat (76%), and mouse (75%) Dnmt1. The expression of porcine Dnmt1 mRNA was detected during porcine embryogenesis. The mRNA was detected at stages of porcine preimplantation development (1-cell, 2-cell, 4-cell, 8-cell, morula, and blastocyst stages). It was also abundantly expressed in tissues (lung, ovary, kidney and somatic cells). Further investigations are necessary to understand the complex links between methyltransferase 1 and the transcriptional activity in cloned porcine tissues.

Effect of Alpha Lipoic Acid on in vitro Maturation of Porcine Oocytes and Subsequent Embryonic Development after Parthenogenetic Activation

  • Kang, Young-Hun;Hyun, Sang-Hwan
    • 한국수정란이식학회지
    • /
    • 제32권4호
    • /
    • pp.267-274
    • /
    • 2017
  • Alpha lipoic acid (ALA) is a biological membranes compound. As the antioxidant, it decreases the oxidized forms of other antioxidant substances such as vitamin C, vitamin E, and glutathione (GSH). To examine the effect of ALA on the in vitro maturation (IVM) of porcine oocytes, we investigated intracellular GSH and reactive oxygen species (ROS) levels, and subsequent embryonic development after parthenogenetic activation (PA). Intracellular GSH levels in oocytes treated with 50uM ALA increased significantly (P < 0.05) and exhibited a significant (P < 0.05) decrease in intracellular ROS levels compared with the control group. Oocytes matured with 50 uM of ALA during IVM displayed significantly higher cleavage rates (67.8% vs. 83.4%, respectively), and higher blastocyst formation rates and total cell number of blastocysts after PA (31.6%, 58.49 vs. 46.8%, 68.58, respectively) than the control group. In conclusion, these results suggest that treatment with ALA during IVM improves the cytoplasmic maturation of porcine oocytes by increasing the intracellular GSH levels, thereby decreasing the intracellular ROS levels and subsequent embryonic developmental potential of PA.

Effects of MMP-2 activation and FSH or LH Hormone Supplementation on Embryo Development in In Vitro Fertilization of Porcine

  • Kim, Sang Hwan;Yoon, Jong Taek
    • 한국수정란이식학회지
    • /
    • 제33권4호
    • /
    • pp.313-319
    • /
    • 2018
  • The purpose of this study was to analyze whether FSH and LH hormone treatment directly or indirectly affect embryo development in embryonic development. To determine this, we compared the development of embryonic cells through the expression pattern of MMPs. As a result, 33.8% of blastocysts were formed in FSH added group, 20.8% in LH added group and 10% in FSH + LH added group. In addition, the activity of MMP-9 was highly detected in the FSH-added group, and the expression of Casp-3 was much lower than that of the other groups. These results suggest that the addition of FSH seems to increase the activity of MMP-9 in embryonic cells, and that LH, on the contrary, may activate MMP-2 activity. In addition, the expression level of MMP-2 in the FSH-added group was high in the Trophoblast cell group and in the LH-added group, the hormone ideal secretion might affect the development of the embryonic cell.

Effect of MEM Vitamins Supplementation of In vitro Maturation Medium and In vitro Culture Medium on the Development of Porcine Embryos

  • Kim, J.Y.;Lee, E.J.;Park, J.M.;Park, H.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권11호
    • /
    • pp.1541-1546
    • /
    • 2011
  • This study was carried out to examine the influence of minimum essential medium (MEM) vitamins supplementation to in vitro maturation medium and in vitro culture medium on the development of porcine embryos. Porcine embryo development was investigated following cultivation in both in vitro maturation and culture medium with the supplementation of MEM vitamins (0, 0.1, 0.2 and 0.4%) using immature oocytes collected from the ovary of prepubertal gilts. Embryo development was observed and the total cell number in each blastocyst generated under the culture conditions was quantified following supplementation of the medium. The embryonic development rate of the blastocyst and hatched blastocyst was higher, but not significantly so, when 0.4% MEM vitamins were supplemented to the in vitro maturation medium of the porcine oocyte. Interestingly, the total number of cells in the blastocyst was significantly higher in the in vitro maturation MEM vitamins supplemented group compared to either the untreated group or the group which had MEM vitamins supplemented to both in vitro maturation and in vitro culture medium simultaneously (p<0.05). Therefore, the supplementation of 0.4% MEM vitamins to the in vitro mature medium has a beneficial effect on the embryonic development of in vitro produced blastocysts derived from the immature porcine oocytes.

Effect of Oocyte Maturation Medium, Cytochalasin Treatment and Electric Activation on Embryonic Development after Intracytoplasmic Sperm Injection in Pigs

  • Lee, Joohyeong;Choi, Jung Hoon;Lee, Seung Tae;Hyun, Sang-Hwan;Lee, Eunsong
    • 한국수정란이식학회지
    • /
    • 제28권2호
    • /
    • pp.127-132
    • /
    • 2013
  • The objective of this study was to examine the effect of in vitro maturation (IVM) medium, cytochalasin B (CB) treatment during intracytoplasmic sperm injection (ICSI), and electric activation on in vitro development ICSI-derived embryos in pigs. Immature pig oocytes were matured in vitro in medium 199 (M199) or porcine zygote medium (PZM)-3 that were supplemented with porcine follicular fluid, cysteine, pyruvate, EGF, insulin, and hormones for the first 22 h and then further cultured in hormone-free medium for an additional 21~22 h. ICSI embryos were produced by injecting single sperm directly into the cytoplasm of IVM oocytes. The oocytes matured in PZM-3 with 61.6 mM NaCl (low-NaCl PZM-3) tended to decrease (0.05

Existence of Amino Acids in Defined Culture Medium Influences In Vitro Development of Parthenogenetic and Nuclear Transfer Porcine Embryos

  • Won, Cheol-Hee;Park, Sang-Kyu;Kim, Ki-Young;Roh, Sang-Ho
    • 한국수정란이식학회지
    • /
    • 제23권4호
    • /
    • pp.245-250
    • /
    • 2008
  • This study was designed to investigate the effect of essential amino acids (EAA) and/or non-essential amino acids (NEAA) on the development of parthenogenetic and somatic cell nuclear transfer (SCNT) porcine embryos in vitro. To evaluate the timing of amino acids supplementation, activated oocytes were cultured in NCSU23-PVA with EAA, NEAA or NEAA+EAA (AAs) during specific periods as below: EAA, NEAA or AAs were supplemented during Day 0 to 6 (whole culture period: ALL), Day 2 to Day 6 (post-maternal embryonic transition period: POST-MET), Day 5 to Day 6 (post-compaction period: POST-CMP), Day 0 to Day 2 (pre-maternal embryonic transition period: PRE-MET), or Day 0 to Day 4 (post-compaction period: PRE-CMP). Supplementation of NEAA decreased cleavage rates in PRE-MET and PRE-CMP and also decreased blastocyst rates in POST-CMP. On the other hand, EAA significantly enhanced blastocyst formation rate in POST-MET and no detrimental effect on embryonic development in other groups. Interestingly, NEAA and EAA had synergistic effect when they were supplemented to the medium during whole culture period. Supplementation of AAs also enhanced SCNT porcine embryo development whereas BSA-free medium without AAs could not supported blastocyst formation of SCNT embryos. In conclusion, existence of EAA and NEAA in defined culture medium variously influences the development of parthenogenetic and SCNT porcine embryos, and their positive effect are only occurred when both EAA and NEAA are supplemented to the medium during whole culture period. Additionally, AAs supplementation enhances the blastocyst formation of SCNT porcine embryos when they are cultured in the defined condition.

Effect of the Addition of β-Hydroxybutyrate to Chemically Defined Maturation Medium on the Nuclear Maturation, Sperm Penetration and Embryonic Development of Porcine Oocytes In vitro

  • Endo, R.;Ishii, A.;Nakanishi, A.;Nabenishi, H.;Ashizawa, K.;Tsuzuki, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권11호
    • /
    • pp.1421-1426
    • /
    • 2010
  • We investigated the effects of various concentrations of ${\beta}$-hydroxybutyrate (BHB, 0, 0.1, 1 and 10 mM), a ketone body, added to chemically-defined maturation medium with or without energy substrates (glucose, pyruvate and lactate) on nuclear maturation rates up to the metaphase stage of the second meiotic division (M-II stage). In addition, we also assessed the influence of BHB on glutathione content, sperm penetration rate and embryonic development up to the blastocyst stage of oocytes matured under the presence of these energy substrates. Nuclear maturation rates up to the M-II stage of oocytes matured with BHB in each concentration group did not show a significant increase compared with the control (0 mM) groups in both the presence and absence of energy substrates. Although glutathione contents were not significantly different in each BHB concentration group, the sperm penetration rate in the 1 mM BHB group was significantly higher (p<0.05) and the embryonic development rate of oocytes up to the blastocyst stage was significantly lower (p<0.05) than the respective values of the control groups. These results suggest that BHB added to a chemically-defined maturation medium may stimulate sperm penetration while inhibiting embryonic development of porcine oocytes.

Porcine OCT4 reporter system as a tool for monitoring pluripotency states

  • Kim, Seung-Hun;Lee, Chang-Kyu
    • 한국동물생명공학회지
    • /
    • 제36권4호
    • /
    • pp.175-182
    • /
    • 2021
  • Pluripotent stem cells could self-renew and differentiate into various cells. In particular, porcine pluripotent stem cells are useful for preclinical therapy, transgenic animals, and agricultural usage. These stem cells have naïve and primed pluripotent states. Naïve pluripotent stem cells represented by mouse embryonic stem cells form chimeras after blastocyst injection. Primed pluripotent stem cells represented by mouse epiblast stem cells and human embryonic stem cells. They could not produce chimeras after blastocyst injection. Populations of embryonic stem cells are not homogenous; therefore, reporter systems are used to clarify the status of stem cells and to isolate the cells. For this reason, studies of the OCT4 reporter system have been conducted for decades. This review will discuss the naïve and primed pluripotent states and recent progress in the development of porcine OCT4 reporter systems.