• Title/Summary/Keyword: porcine blastocyst

Search Result 274, Processing Time 0.022 seconds

Effect of Co-culture with Porcine Endometrial Cell Monolayers on the Development of In Vitro Produced Porcine Zygotes (자궁내막세포막의 공배양이 돼지 체외수정란의 초기발달에 미치는 영향)

  • 한만희;박병권;박창식;이규승
    • Journal of Embryo Transfer
    • /
    • v.11 no.3
    • /
    • pp.217-223
    • /
    • 1996
  • This study was conducted to investigate the effects of co-culture for the development rate to morula /blastocyst stages of early porcine embryos, derived from oocytes matured and fertilized in vitro, with porcine endometrial cell monolayers(PEM) in the two different media, respectively. The rates of embryos developed to 2-, 4-, 8~16-cell and morula /blastocyst stage were 49.6, 40.5, 28.2 and 15.3% in Ham's F-10 with PEM, and 55.3, 45.9, 32.7, and 17.6% in TCM-HEPES with PEM, respectively. The above development rates to morula /blastocyst stages were significantly higher than those of the embryos cultured in the Ham's F-10 and TGM-HEPES without PEM(P<0.05). The in vitro development rates to the morula /blastocyst stage of 1-cell embryos cultured in Ham's F-10 and TCM-HEPES without PEM were 0~1.2%. Especially, most of embryos were observed to arrest the development beyond 4-cell stages. As shown in the above results, the co-culture of in vitro produced porcine embryos with PEM in the two different media enhanced the development of fertilized eggs to morula /blastocyst stages in vitro. However, we didn't find out any differences for the in vitro development to morula /blastocyst stages between Ham's F-10 and TcM-HEPES media.

  • PDF

Effect of MEM Vitamins Supplementation of In vitro Maturation Medium and In vitro Culture Medium on the Development of Porcine Embryos

  • Kim, J.Y.;Lee, E.J.;Park, J.M.;Park, H.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.11
    • /
    • pp.1541-1546
    • /
    • 2011
  • This study was carried out to examine the influence of minimum essential medium (MEM) vitamins supplementation to in vitro maturation medium and in vitro culture medium on the development of porcine embryos. Porcine embryo development was investigated following cultivation in both in vitro maturation and culture medium with the supplementation of MEM vitamins (0, 0.1, 0.2 and 0.4%) using immature oocytes collected from the ovary of prepubertal gilts. Embryo development was observed and the total cell number in each blastocyst generated under the culture conditions was quantified following supplementation of the medium. The embryonic development rate of the blastocyst and hatched blastocyst was higher, but not significantly so, when 0.4% MEM vitamins were supplemented to the in vitro maturation medium of the porcine oocyte. Interestingly, the total number of cells in the blastocyst was significantly higher in the in vitro maturation MEM vitamins supplemented group compared to either the untreated group or the group which had MEM vitamins supplemented to both in vitro maturation and in vitro culture medium simultaneously (p<0.05). Therefore, the supplementation of 0.4% MEM vitamins to the in vitro mature medium has a beneficial effect on the embryonic development of in vitro produced blastocysts derived from the immature porcine oocytes.

Effect of Co-culture with Porcine Oviductal Epithelial Cell Monolayers on the Development of In Vitro Produced Procine Zygotes (난관상피세포와의 공배양이 돼지 체외수정란의 초기발생에 미치는 영향)

  • 박병권;한만희;서길웅;이규승
    • Korean Journal of Animal Reproduction
    • /
    • v.20 no.3
    • /
    • pp.299-305
    • /
    • 1996
  • This study was conducted to investigate the effects of co-culture for the development rate to morula/blastocyst stages of early porcine embryos, derived from oocytes matured and fertilized in vitro, with porcine oviductal epithelial cell monolayers(POEC) in the two different media, respectively. The rates of embryos developed to 2-, 4-, 8∼16-cell and morula/blastocyst stage were 57.2, 48.2, 37.2 and 19.3% in Ham's F-10 with POEC, and 51.4, 41.2, 31.1, and 15.5% in TCM-HEPES with POEC, respectively. The above development rates to morula/blastocyst stages were significantly higher than those of the embryos cultured in the Ham's F-10 and TCM-HEPES with out POEC(P<0.05). The in vitro development rates to the morula/blastocyst stage of 1-cell embryos cultured in Ham's F-10 and TCM-HEPES without POEC were 1.1∼1.2%. Especially, most of embryos were observed to arrest the development beyond 4-cell stages. As shown in the above results, the co-culture of in vitro produced porcine embryos with POEC in the two different media enhanced the development of fertilized eggs to morula/blastocyst stages in vitro. However, we didn't find out any difference for the in vitro development to morula/blastocyst stages between Ham's F-10 and TCM-HEPES media.

  • PDF

Effect of Porcine Serum as Macromolecule on the Meiotic Maturation and Embryonic Development of Porcine Oocytes

  • Son, Jong-Min;Lee, Doo-Soo;Lee, Eon-Song;Cho, Jong-Ki;Shin, Sang-Tae
    • Journal of Embryo Transfer
    • /
    • v.23 no.2
    • /
    • pp.93-100
    • /
    • 2008
  • This study was conducted to establish an in vitro maturation (IVM) system by selection of efficient macromolecule in the porcine in vitro production (IVP) technology. To choose the efficient macromolecules in the development of porcine embryos, the effects of 3 kinds of macromolecules (porcine serum; PS, porcine follicular fluid; pFF, and polyvinyl alcohol; PVA) supplemented in IVM media on the maturation, cleavage, and development rates to blastocyst of parthenogenetic activation (PA) and in vitro fertilization (IVF) embryos were examined. The maturation rates of porcine oocytes in media supplemented with PS were significantly higher than those with pFF and PVA (92.4% vs. 85.4%, 77.1%; p<0.05). In the cleavage and development to blastocyst rates, supplement with PS or pFF in the IVM media was more effective than PA. However, there were no significant differences in cleavage and development to blastocyst between PS and pFF group. From the results of this study, it was demonstrated that PS was optimal macromolecule in the porcine IVM media.

Quantitative analysis of mitochondrial DNA in porcine-mouse cloned embryos

  • Hyeonyeong Shin;Soyeon Kim;Myungyoun Kim;Jaeeun Lee;Dongil Jin
    • Journal of Animal Science and Technology
    • /
    • v.65 no.4
    • /
    • pp.767-778
    • /
    • 2023
  • The aim of the research is to identify that porcine oocytes can function as recipients for interspecies cloning and have the ability to develop to blastocysts. Furthermore each mitochondrial DNA (mtDNA) in interspecises cloned embryos was analyzed. For the study, mouse-porcine and porcine-porcine cloned embryos were produced with mouse fetal fibroblasts (MFF) and porcine fetal fibroblasts (PFF), respectively, introduced as donor cells into enucleated porcine oocytes. The developmental rate and cell numbers of blastocysts between intraspecies porcine-porcine and interspecies mouse-porcine cloned embryos were compared and real-time polymerase chain reaction (PCR) was performed for the estimate of mouse and porcine mtDNA copy number in mouse-porcine cloned embryos at different stages.There was no significant difference in the developmental rate or total blastocyst number between mouse-porcine cloned embryos and porcine-porcine cloned embryos (11.1 ± 0.9%, 25 ± 3.5 vs. 10.1 ± 1.2%, 24 ± 6.3). In mouse-porcine reconstructed embryos, the copy numbers of mouse somatic cell-derived mtDNA decreased between the 1-cell and blastocyst stages, whereas the copy number of porcine oocyte-derived mtDNA significantly increased during this period, as assessed by real-time PCR analysis. In our real-time PCR analysis, we improved the standard curve construction-based method to analyze the level of mtDNA between mouse donor cells and porcine oocytes using the copy number of mouse beta-actin DNA as a standard. Our findings suggest that mouse-porcine cloned embryos have the ability to develop to blastocysts in vitro and exhibit mitochondrial heteroplasmy from the 1-cell to blastocyst stages and the mouse-derived mitochondria can be gradually replaced with those of the porcine oocyte in the early developmental stages of mouse-porcine cloned embryos.

M-RAS Regulate CDH1 Function in Blastomere Compaction during Porcine Embryonic Development

  • Zhou, Dongjie;Niu, Yingjie;Cui, Xiang-Shun
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.1
    • /
    • pp.12-20
    • /
    • 2020
  • Cell adhesion plays an important role in the differentiation of the morphogenesis and the trophectoderm epithelium of the blastocyst. In the porcine embryo, CDH1 mediated adhesion initiates at compaction before blastocyst formation, regulated post-translationally via protein kinase C and other signaling molecules. Here we focus on muscle RAS oncogene homolog (M-RAS), which is the closest relative to the RAS related proteins and shares most regulatory and effector interactions. To characterize the effects of M-RAS on embryo compaction, we used gain- and loss-of-function strategies in porcine embryos, in which M-RAS gene structure and protein sequence are conserved. We showed that knockdown of M-RAS in zygotes reduced embryo development abilities and CDH1 expression. Moreover, the phosphorylation of ERK was also decreased in M-RAS KD embryos. Overexpression of M-RAS allows M-RAS KD embryos to rescue the embryo compaction and blastocyst formation. Collectively, these results highlight novel conserved and multiple effects of M-RAS during porcine embryo development.

Effect of Glucose and Sodium Phosphate on In Vitro Development of Porcine Embryos

  • Lee, S.H.;Lim, S.M.;Lee, S.Y.;Cheong, H.T.;Yang, B.K.;Park, C.K.
    • Reproductive and Developmental Biology
    • /
    • v.28 no.2
    • /
    • pp.101-105
    • /
    • 2004
  • This study was carried out to evaluate the effects of glucose and sodium phosphate on in vitro development of porcine oocytes matured and fertilized in vitro. When the culture medium was supplemented with various concentrations of glucose, the higher proportions (23 and 26%) of oocytes developed to morular or blastocyst stages were at the concentrations of 2.78 and 5.56 mM than 0 (9%; P<0.05) and 11.12 mM (18%). In experiment to evaluate effect of sodium phosphate during in vitro development of porcine oocytes, a significantly (P<0.05) higher proportions of embryos developed to morular or blastocyst stages was obtained with sodium phosphateof 0.28 (25%) and 0.53 (27%) mM than 0 (15%), 1.05 (19%) and 2.10 (10%) mM. On the other hand, when oocytes were cultured in medium with (0.53 mM) sodium phosphate, the proportions of developed embryos were significantly (P<0.05) higher in medium without (29%) that than with (14%) 5.56 mM glucose. However, a higher proportion of embryos developed to morular or blastocyst stages were obtained in medium with (23%) that than without (8%) glucose (P<0.05). The minimum essential medium (MEM) added to the culture medium were higher regardless of presence of sodium phosphate and glucose on the development of embryos. Although sodium phosphate and glucose could support morular and blastocyst development to a limited extend (10∼24%), significantly higher proportion (36%) at morular or blastocyst stages was obtained by MEM adding in the medium with sodium phosphate and glucose. These results suggest that the early development of in vitro fertilized porcine oocytes can be maintained efficiently by glucose and sodium phosphate when they were cultured in medium with MEM.

Existence of Amino Acids in Defined Culture Medium Influences In Vitro Development of Parthenogenetic and Nuclear Transfer Porcine Embryos

  • Won, Cheol-Hee;Park, Sang-Kyu;Kim, Ki-Young;Roh, Sang-Ho
    • Journal of Embryo Transfer
    • /
    • v.23 no.4
    • /
    • pp.245-250
    • /
    • 2008
  • This study was designed to investigate the effect of essential amino acids (EAA) and/or non-essential amino acids (NEAA) on the development of parthenogenetic and somatic cell nuclear transfer (SCNT) porcine embryos in vitro. To evaluate the timing of amino acids supplementation, activated oocytes were cultured in NCSU23-PVA with EAA, NEAA or NEAA+EAA (AAs) during specific periods as below: EAA, NEAA or AAs were supplemented during Day 0 to 6 (whole culture period: ALL), Day 2 to Day 6 (post-maternal embryonic transition period: POST-MET), Day 5 to Day 6 (post-compaction period: POST-CMP), Day 0 to Day 2 (pre-maternal embryonic transition period: PRE-MET), or Day 0 to Day 4 (post-compaction period: PRE-CMP). Supplementation of NEAA decreased cleavage rates in PRE-MET and PRE-CMP and also decreased blastocyst rates in POST-CMP. On the other hand, EAA significantly enhanced blastocyst formation rate in POST-MET and no detrimental effect on embryonic development in other groups. Interestingly, NEAA and EAA had synergistic effect when they were supplemented to the medium during whole culture period. Supplementation of AAs also enhanced SCNT porcine embryo development whereas BSA-free medium without AAs could not supported blastocyst formation of SCNT embryos. In conclusion, existence of EAA and NEAA in defined culture medium variously influences the development of parthenogenetic and SCNT porcine embryos, and their positive effect are only occurred when both EAA and NEAA are supplemented to the medium during whole culture period. Additionally, AAs supplementation enhances the blastocyst formation of SCNT porcine embryos when they are cultured in the defined condition.

Effects of Trichostatin A on In Vitro Development of Porcine Parthenogenetic and Nuclear Transfer Embryos

  • Diao, Yun-Fei;Kenji, Naruse;Han, Rong-Xun;Lin, Tao;Oqani, Reza-K.;Kang, Jung-Won;Jin, Dong-Il
    • Reproductive and Developmental Biology
    • /
    • v.37 no.2
    • /
    • pp.57-64
    • /
    • 2013
  • Developmental potential of cloned embryos is related closely to epigenetic modification of somatic cell genome. The present study was to investigate the effects of applying histone deacetylation inhibitor, trichostatin A (TSA) to activated porcine embryos on subsequent development of porcine parthenogenetic and nuclear transfer embryos. Electrically activated oocytes were treated with 5 nM TSA for different exposure times (0, 1, 2 and 4 hr) and then the activated embryos were cultured for 7 days. The reconstructed embryos were treated with different concentrations of 0, 5, 10 and 25 nM TSA for 1 hr. Also 5 nM TSA was tested with different exposure times of 0, 0.5, 1, 2 and 4 hr. And fetal fibroblast cells were treated with 50 nM TSA for 1, 2 or 4 hr and with 5 nM TSA for 1 hr. Cumulus-free oocytes were enucleated and reconstructed by TSA-treated donor cells and electrically fused and cultured for 6 days. In parthenogenetic activation experiments, 5 nM TSA treatment for 1 hr significantly improved the percentage of blastocyst developmental rates than the other groups. Total cell number of blastocysts in 1 hr group was significantly higher than other groups or control. Similarly, blastocyst developmental rates of porcine NT embryos following 5 nM TSA treatment for 1 hr were highest. And the reconstructed embryos from donor cells treated by 50 nM TSA for 1 hr improved the percentage of blastocyst developmental rates than the control group. In conclusion, TSA treatment could improve the subsequent blastocyst development of porcine parthenogenetic and nuclear transfer embryos.

Effect of Oxygen Concentrations with Superoxide Dismutase on In Vitro Maturation of Porcine Follicular Oocytes and In Vitro Development of Porcine IVM/IVF Embryos (산소농도 및 Superoxide Dismutase가 돼지 난포란의 체외성숙과 배발달에 미치는 영향)

  • 한만희;이규승
    • Journal of Embryo Transfer
    • /
    • v.16 no.3
    • /
    • pp.173-182
    • /
    • 2001
  • The present study was carried out to examine the effect of superoxide dismutase (SOD) on in vitro maturation (IVM) of porcine follicular oocytes and oxygen concentration with SOD on in vitro development (IVD) of porcine IVM/IVF embryos. The results were summarized as follows : 1. The rates of nuclear maturation, penetrated oocytes, polyspermic oocytes and mean numbers of the penetrated sperm were not different in the NCSU-23 maturation media with 0, 100, 500 and 1,000 units/ml SOD. However. the pronucleus formation rates were significantly lower in oocytes matured with addition groups than those of no addition groups of SOD (P>0.05). 2. The rates of blastocyst formation and total cell numbers of blastocyst at day 7 after in vitro fertilization were significantly lower in addition groups than those of the no addition groups of SOD (P>0.05). 3. The rates of blastocyst formation at day 7 after in vitro fertilization were higher in the NCSU-23 culture medium with 100 units/ml SOD than in those cultured with 0, 500 and 1,000 units/ml SOD under the 5% and 20% $O_2$concentrations. However, no differences was found in the total cell numbers of blastocyst among the treatments. In conclusion, these results suggested that the addition of SOD was not adequate for porcine oocyte maturation and further development, also the rates of blastocyst formation and total cell numbers of blastocyst at day 7 of porcine IVM/IVF embryos were not different in the NCSU-23 culture medium under the 5% and 20% $O_2$concentrations.

  • PDF