• 제목/요약/키워드: population diversity

검색결과 1,130건 처리시간 0.026초

Intron sequence diversity of the asian cavity-nesting honey bee, Apis cerana (Hymenoptera: Apidae)

  • Wang, Ah Rha;Jeong, Su Yeon;Jeong, Jun Seong;Kim, Seong Ryul;Choi, Yong Soo;Kim, Iksoo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제31권2호
    • /
    • pp.62-69
    • /
    • 2015
  • The Asian cavity-nesting honeybee, Apis cerana (Hymenoptera: Apidae), has been extensively studied for its biogeography and genetic diversity, but the molecules utilized in past studies were mainly ~90 bp long mitochondrial non-coding sequences, located between $tRNA^{Leu}$ and COII. Thus, additional molecular markers may enrich our understanding of the biogeography and genetic diversity of this valuable bee species. In this study, we reviewed the public genome database to find introns of cDNA sequences, with the assumption that these introns may have less evolutionary constraints. The six introns selected were subjected to preliminary tests. Thereafter, two introns, titled White gene and MRJP9 gene, were selected. Sequencing of 552 clones from 184 individual bees showed a total of 222 and 141 sequence types in the White gene and MRJP9 gene introns, respectively. The sequence divergence ranged from 0.6% to 7.9% and from 0.26% to 17.6% in the White gene and the MRJP9 introns, respectively, indicating higher sequence divergence in both introns. Analysis of population genetic diversity for 16 populations originating from Korea, China, Vietnam, and Thailand shows that nucleotide diversity (π) ranges from 0.003117 to 0.025837 and from 0.016541 to 0.052468 in the White gene and MRJP9 introns, respectively. The highest π was found in a Vietnamese population for both intron sequences, whereas the nine Korean populations showed moderate to low sequence divergence. Considering the variability and diversity, these intron sequences can be useful as non-mitochondrial DNA-based molecular markers for future studies of population genetics.

Phylogeographic patterns in cryptic Bostrychia tenella species (Rhodomelaceae, Rhodophyta) across the Thai-Malay Peninsula

  • Bulan, Jakaphan;Maneekat, Sinchai;Zuccarello, Giuseppe C.;Muangmai, Narongrit
    • ALGAE
    • /
    • 제37권2호
    • /
    • pp.123-133
    • /
    • 2022
  • Genetic diversity and distribution patterns of marine macroalgae are increasingly being documented in Southeast Asia. These studies show that there can be significant levels of genetic diversity and isolation between populations on either side of the Thai-Malay Peninsula. Bostrychia tenellla is a common filamentous red seaweed in the region and the entity is represented by at least two cryptic species. Despite being highly diverse and widespread, genetic variation and population structure of this species complex remains understudied, especially around the Thai-Malay Peninsula. We analyzed genetic diversity and inferred the phylogeographic pattern of specimens identified as B. tenella using the plastid RuBisCo spacer from samples from the Andaman Sea and the Gulf of Thailand. Our genetic analysis confirmed the occurrence of the two cryptic B. tenella species (B and C) along both coasts. Cryptic species B was more common in the area and displayed higher genetic diversity than species C. Historical demographic analyses indicated a stable population for species B, but more recent population expansion for species C. Our analyses also revealed that both cryptic species from the Andaman Sea possessed higher genetic diversity than those of the Gulf of Thailand. We also detected moderate to high levels of gene flow and weak phylogeographic structure of cryptic species B between the two coasts. In contrast, phylogeographic analysis showed genetic differences between populations of both cryptic species within the Andaman Sea. Overall, these results suggest that cryptic B. tenella species around Thai-Malay Peninsula may have undergone different demography histories, and their patterns of genetic diversity and phylogeography were likely caused by geological history and regional sea surface current circulation in the area.

Study of Genetic Diversity among Simmental Cross Cattle in West Sumatra Based on Microsatellite Markers

  • Agung, Paskah Partogi;Saputra, Ferdy;Septian, Wike Andre;Lusiana, Lusiana;Zein, Moch. Syamsul Arifin;Sulandari, Sri;Anwar, Saiful;Wulandari, Ari Sulistyo;Said, Syahruddin;Tappa, Baharuddin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권2호
    • /
    • pp.176-183
    • /
    • 2016
  • A study was conducted to assess the genetic diversity among Simmental Cross cattle in West Sumatra using microsatellite DNA markers. A total of 176 individual cattle blood samples was used for obtaining DNA samples. Twelve primers of microsatellite loci as recommended by FAO were used to identify the genetic diversity of the Simmental Cross cattle population. Multiplex DNA fragment analysis method was used for allele identification. All the microsatellite loci in this study were highly polymorphic and all of the identified alleles were able to classify the cattle population into several groups based on their genetic distance. The heterozygosity values of microsatellite loci in this study ranged from 0.556 to 0.782. The polymorphism information content (PIC) value of the 12 observed loci is high (PIC>0.5). The highest PIC value in the Simmental cattle population was 0.893 (locus TGLA53), while the lowest value was 0.529 (locus BM1818). Based on the genetic distance value, the subpopulation of the Simmental Cross-Agam and the Simmental Cross-Limapuluh Kota was exceptionally close to the Simmental Purebred thus indicating that a grading-up process has taken place with the Simmental Purebred. In view of the advantages possessed by the Simmental Cross cattle and the evaluation of the genetic diversity results, a number of subpopulations in this study can be considered as the initial (base) population for the Simmental Cross cattle breeding programs in West Sumatra, Indonesia.

A TILLING Rice Population Induced by Gamma-ray Irradiation and its Genetic Diversity

  • Cho, Hyun Yong;Park, Seo Jung;Kim, Dong Sub;Jang, Cheol Seong
    • 한국육종학회지
    • /
    • 제42권4호
    • /
    • pp.365-373
    • /
    • 2010
  • TILLING (Targeting Induced Local Lesions IN Genomes) is broadly regarded as an excellent methodology for reverse genetics applications. Approximately 15,000 $M_3$ TILLING lines have been developed via the application of gamma-ray irradiation to rice seeds (cv. Donganbyeo), followed by subsequent selections. In an effort to evaluate the genetic diversity of the TILLING population, we have employed the AFLP multiple dominant marker technique. A total of 96 (0.64%) TILLING lines as well as Donganbyeo were selected randomly and their genetic diversity was assessed based on AFLP marker polymorphisms using 5 primer combinations. An average of 100.4 loci in a range of 97 to 106 was detected using these primer combinations, yielding a total of 158 (31.4%) polymorphic loci between Donganbyeo and each of the 96 lines. A broad range of similarity from 80% to 96% with an average of 89.4% between Donganbyeo and each of the 96 lines was also observed, reflecting the genetic diversity of the TILLING population. Approximately 28 polymorphic loci have been cloned and their sequences were BLAST-searched against rice whole genome sequences, resulting in 20 matches to each of the gene bodies including exon, intron, 1 kb upstream and 1 kb downstream regions. Six polymorphic loci evidenced changes in the coding regions of genes as compared to the rice pseudomolecules, 4 loci of which exhibited missense mutations and 2 loci of which exhibited silent mutations. Therefore, the results of our study show that the TILLING rice population should prove to be a useful genetic material pool for functional genomics as well as mutation breeding applications.

Genetic diversity and population structure of Mongolian regional horses with 14 microsatellite markers

  • Yun, Jihye;Oyungerel, Baatartsogt;Kong, Hong Sik
    • Animal Bioscience
    • /
    • 제35권8호
    • /
    • pp.1121-1128
    • /
    • 2022
  • Objective: This study aimed to identify the genetic diversity and population structure of Mongolian horse populations according to the province of residence (Khentii, KTP; Uvs, USP; Omnogovi and Dundgovi, GOP; Khovsgol, KGP) using 14 microsatellite (MS) markers. Methods: A total of 269 whole blood samples were obtained from the four populations (KTP, USP, GOP, KGP) geographically distinct provinces. Multiplex polymerase chain reaction (PCR) was conducted using 14 MS markers (AHT4, ASB2, ASB17, ASB23, CA425, HMS1, HMS2, HMS3, HMS6, HMS7, HTG4, HTG6, HTG7, and VHL20), as recommended by the International Society for Animal Genetics. Capillary electrophoresis was conducted using the amplified PCR products, alleles were determined. Alleles were used for statistical analysis of genetic variability, Nei's DA genetic distance, principal coordinate analysis (PCoA), factorial corresponding analysis (FCA), and population structure. Results: On average, the number of alleles, expected heterozygosity (HExp), observed heterozygosity (HObs), and polymorphic information content among all populations were 11.43, 0.772, 0.757, and 0.737, respectively. In the PCoA and FCA, GOP, and KGP were genetically distinct from other populations, and the KTP and USP showed a close relationship. The two clusters identified using Nei's DA genetic distance analysis and population structure highlighted the presence of structurally clear genetic separation. Conclusion: Overall, the results of this study suggest that genetic diversity between KTP and USP was low, and that between GOP and KGP was high. It is thought that these results will help in the effective preservation and improvement of Mongolian horses through genetic diversity analysis and phylogenetic relationships.

Genetic diversity analysis of the line-breeding Hanwoo population using 11 microsatellite markers

  • Shil Jin;Jeong Il Won;Byoungho Park;Sung Woo Kim;Ui Hyung Kim;Sung Sik Kang;Hyun-Jeong Lee;Sung Jin Moon;Myung Sun Park;Hyun Tae Lim;Eun Ho Kim;Ho Chan Kang;Sun Sik Jang;Nam Young Kim
    • 농업과학연구
    • /
    • 제50권3호
    • /
    • pp.321-330
    • /
    • 2023
  • The genetic diversity of three Hanwoo populations was analyzed using 11 microsatellite (MS) markers for the traceability of Hanwoo beef in this study. A total of 1,099 Hanwoo cattle from two populations (694 line-breeding and 405 general Hanwoo) at the Hanwoo Research Institute (HRI) of the National Institute of Animal Science and 1,171 Korean proven bulls (KPNs) were used for the analysis. Specific alleles of four markers (ETH10, INRA23, TGLA122, and TGLA227) were identified only in the line-breeding population, although at a low allele frequency (0.001 - 0.02). The genetic distance (Nei's D) between line-breeding Hanwoo and KPN was the greatest (0.064), whereas general Hanwoo and KPN were relatively close genetically (0.02); the distance between line-breeding and general Hanwoo was found to be 0.054. These results are expected because the HRI has performed closed breeding via selecting its line-breeding sires without utilizing KPN since 2009. Therefore, the line-breeding Hanwoo population of HRI show different genetic diversity from the KPN population, based on the 11 MS markers. The results of this study provide basic data for securing the genetic diversity of Hanwoo cattle and utilizing line-breeding Hanwoo cattle from the HRI.

Genetic Diversity and Population Structure of Peanut (Arachis hypogaea L.) Accessions from Five Different Origins

  • Zou, Kunyan;Kim, Ki-Seung;Lee, Daewoong;Jun, Tae-Hwan
    • 한국작물학회지
    • /
    • 제65권4호
    • /
    • pp.447-456
    • /
    • 2020
  • Peanut is an allotetraploid derived from a single recent polyploidization. Polyploidization has been reported to have caused significant loss in genetic diversity during the domestication of cultivated peanuts. Single nucleotide polymorphism (SNP)-based markers such as cleaved amplified polymorphic sequences (CAPS) derived from next-generation sequencing (NGS) have been developed and widely applied for breeding and genetic research in peanuts. This study aimed to identify the genetic diversity and population structure using 30 CAPS markers and 96 peanut accessions from five different origins. High genetic dissimilarities were detected between the accessions from Korea and those from the other three South American origins generally regarded as the origin of peanuts, while the accessions from Brazil and Argentina presented the lowest genetic dissimilarity. Based on the results of the present study, accessions from Korea have unique genetic variation compared to those from other countries, while accessions from the other four origins are closely related. Our study identified the genetic differentiation in 96 peanut accessions from five different origins, and this study also showed the successful application of SNP information derived from re-sequencing based on NGS technology.

Allozyme Diversity and Population Genetic Structure in Korean Endemic Plant Species : II. Hosta yingeri (Liliaceae)

  • Chung, Myong Gi
    • Journal of Plant Biology
    • /
    • 제37권2호
    • /
    • pp.141-149
    • /
    • 1994
  • Levels of genetic diversity, population genetic structure, and gene flow in Hosta yingeri, a herbaceous perennial endemic to Taehuksan, Sohuksan, and Hong Islands, were investigated. Starch gel electrophoresis was conducted on leaves for 101 plants collected from three populations. Although the distribution of thespecies is restricted in the islands, it maintains high levels of genetic variatin; 64% of polymorphic loci in at least one population (Ps), the mean number of alleles per locus (Ap) of 1.92, and the mean effective number of alleles per locus (Aep) of 1.52. Overall, mean genetic diversity (Hep=0.250) was substantially higher than mean estimate for species with very similarlife history traits (0.102). Large populaton size, the persistence of multiple generations within populations, high fecundity, predominantly outcrossing breeding system, large size of pollinator visitation areas may be explanatory factors contributing the higher level of genetic diversity maintained within populations. Analysis of fixation indices showed an overall slight excess of heterozygotes (mean FIS=-0.066) relative to Hardy-Weinberg expectations, which may in part be due to the near self-incompatible breeding system in the species. Significant differences in allele frequencies among populaitns were found for 14 out of 16 polymorphic loci (P<0.05). Slightly more than 80% of the total variation in the species was common to all populations (GST=0.198). As expected, indirect estimate of the number of migrants per generation (Nm=0.45, calculated from mean GST) and nine private alleles found in the three populations indicate that gene movement among three isolated island populations was low.

  • PDF

Genetic Diversity of Soybean Landraces in Korea

  • Han, Ouk-Kyu;Abe, Jun;Shimamoto, Yoshiya
    • 한국작물학회지
    • /
    • 제44권3호
    • /
    • pp.256-262
    • /
    • 1999
  • To evaluate the genetic diversity and structure of the South Korean soybean population, 233 landraces collected in various regions of the country were surveyed for 15 allozyme loci and one protein locus. The South Korean population was fixed or nearly fixed at seven of the 16 loci tested. The number of alleles per locus was 2.06 and Nei’s gene diversity was 0.194. These values were lower than the values for the same 16 loci previously reported for the Japanese and Chinese populations. The differences among eight regional groups were not so marked, with only 7.2% of the total variation arising from regional differentiation. Three southern regional groups (Chollabuk-do, Chollanam-do and Kyong-sangnam-do) exhibited a relatively high variability because of frequent occurrence of alleles characteristic of the Japanese population. A marked difference was found in allelic frequencies at the Dial locus between large-seeded landraces and small-seeded ones, suggesting that the latter, which are used mainly for bean sprouts, had been established independently of the former, which are used mostly for soy sauce and cooking with rice. Not only the region but also the usage as food materials should therefore be taken into consideration in designing an efficient collection and preservation method for the Korean soybean landraces.

  • PDF

Genetic Diversity in Cultured and Wild Populations of the Ascidian Halocynthia roretzi Inferred from Mitochondrial DNA Analysis

  • Yoon, Moon-Geun;Lee, Joo-Kyung;Jin, Hyung-Joo;Jin, Deuk-Hee
    • Fisheries and Aquatic Sciences
    • /
    • 제12권1호
    • /
    • pp.44-48
    • /
    • 2009
  • Nucleotide sequences of about 500 bp from the 5' end of mitochondrial (mt) DNA Cytochrome Oxidase I (COI) were analyzed to estimate the genetic variation between wild and cultured populations of the ascidian Halocynthia roretzi from two sites along the coast of Korea. A total of 25 haplotypes were defined by 21 variable nucleotide sites in the examined COI region. Genetic diversity (haplotype diversity and nucleotide divergence) of wild populations was higher than that of the cultured population. These data suggest that reduced genetic variation in the cultured population may have results from bottleneck effect caused by the use of a limited number of parental stock and pooling of gametes for fertilization. Pairwise population $F_{ST}$ estimates inferred that wild and cultured populations were genetically distinct. The combined results suggest that sequence polymorphism in the COI region would be preferable for estimating the genetic diversity of ascidian populations.