DOI QR코드

DOI QR Code

Genetic Diversity in Cultured and Wild Populations of the Ascidian Halocynthia roretzi Inferred from Mitochondrial DNA Analysis

  • Yoon, Moon-Geun (Faculty of Marine Bioscience and Technology, Kangnung- Worlju National University) ;
  • Lee, Joo-Kyung (Faculty of Marine Bioscience and Technology, Kangnung- Worlju National University) ;
  • Jin, Hyung-Joo (Faculty of Marine Bioscience and Technology, Kangnung- Worlju National University) ;
  • Jin, Deuk-Hee (Faculty of Marine Bioscience and Technology, Kangnung- Worlju National University)
  • Published : 2009.03.31

Abstract

Nucleotide sequences of about 500 bp from the 5' end of mitochondrial (mt) DNA Cytochrome Oxidase I (COI) were analyzed to estimate the genetic variation between wild and cultured populations of the ascidian Halocynthia roretzi from two sites along the coast of Korea. A total of 25 haplotypes were defined by 21 variable nucleotide sites in the examined COI region. Genetic diversity (haplotype diversity and nucleotide divergence) of wild populations was higher than that of the cultured population. These data suggest that reduced genetic variation in the cultured population may have results from bottleneck effect caused by the use of a limited number of parental stock and pooling of gametes for fertilization. Pairwise population $F_{ST}$ estimates inferred that wild and cultured populations were genetically distinct. The combined results suggest that sequence polymorphism in the COI region would be preferable for estimating the genetic diversity of ascidian populations.

Keywords

References

  1. Allendorf, F. W. and S.R. Phelps. 1980. Loss of genetic variation in a hatchery stock of cutthroat trout. Trans. Am. Fish. Soc., 109, 537-543 https://doi.org/10.1577/1548-8659(1980)109<537:LOGVIA>2.0.CO;2
  2. Allendorf, F.W. and N. Ryman. 1987. Population genetics and fishery management. In: Genetic management of hatchery stocks, Ryman, N., F. Utter, eds. University of Washington Press, Seattle, 141-159
  3. Avise, J.C. 1998. The history and purview of phylogeography: personal reflection. Mol. Ecol., 7, 371-379 https://doi.org/10.1046/j.1365-294x.1998.00391.x
  4. Avise, J.C. 2000. Phylogeography, Harvard University Press, Cambridge
  5. Ben-Shlomo, R., G. Paz and B. Rinkevich. 2006. Postglacial-period and Recent Invasions Shape the Popu-lation Genetics of Botryllid Ascidians a10ng European Atlantic Coasts. Ecosystems 9, 1118-1127 https://doi.org/10.1007/s10021-006-0141-y
  6. Brown, W.M., M. George, Jr. and A.C. Wilson. 1979. Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. U. S. A., 76, 1967-1971 https://doi.org/10.1073/pnas.76.4.1967
  7. Davis, A.R. and A.J. Butler. 1989. Direct observations of larval dispersal in the colonial ascidian Podoc/avella moluccensis Sluiter: evidence for closed popu1ations. J. Exp. Mar. Biol. Ecol., 127, 189-203 https://doi.org/10.1016/0022-0981(89)90184-6
  8. Dunham, R.A. 2004. Aquacu1ture and fisheries biotechnology. CABI Publishing press,Wallingford, 85-103
  9. Frankel, O.H. and M.E. Soule. 1981. Conservation and Evolution. Cambridge University Press, New York
  10. Grosberg, R.K. 1987 Limited dispersal and proximitydependent mating success in the colonial ascidian Botryllus schlosseri. Evolution, 41, 372-384 https://doi.org/10.2307/2409145
  11. Hedgecock, D. and F. Sly. 1990. Genetic drift and effective population sizes of hatchery-propagated stocks of the Pacific oyster, Crassostrea gigas. Aquaculture, 88, 21-38 https://doi.org/10.1016/0044-8486(90)90316-F
  12. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies ofnucleotide sequences. J. Mol. Evol., 16, 111-120 https://doi.org/10.1007/BF01731581
  13. Lundrigan, T.A., J.D. Reist and M.M. Ferguson. 2005. Microsatellite genetic variation within and among Arctic charr (Salelinus alpines) from quacu1ture and natural populations in North America. Aquaculture, 244, 63-75 https://doi.org/10.1016/j.aquaculture.2004.11.027
  14. McElroy, D., P. Moran, E. Berrningham and I. Komfield. 1993. REAP: An integrated environment for the manipu1ation and phylogenetic analysis of restriction data. J. Hered., 83, 157-158
  15. Nei, M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York
  16. Nei, M. and F. Tajima. 1981. DNA polymorphism detectable by restriction endonucleases. Genetics, 97, 145-163
  17. Ryman, N. and L. Laikre. 1991. Effects of supportive breeding on the genetically effective popu1ation size. Conserv. Biol., 5, 325-329 https://doi.org/10.1111/j.1523-1739.1991.tb00144.x
  18. Sambrook, J., E.F. Fritsch and T. Maniatis. 1989. Molecular Cloning. A laboratory manual, 2nd edition, Cold Spring Harbor Laboratory Press, New York, 9.l 6-9.23
  19. Sekino, M., M. Hara and N. Taniguchi. 2002. Loss of microsatellite and mitochondrial DNA variation in Hatchery strains of Japanese floundεr Paralichthys olivaceus. Aquaculture, 213, 101-122 https://doi.org/10.1016/S0044-8486(01)00885-7
  20. Slatkin, M. and R.R. Hudson. 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics, 129, 555- 562
  21. Yokobori, S.I., T. Ueda, G. Feldmaier-Fuchs, S. Paabo, R. Uεshima,A. Kondow, K. Nishikawa and K. Watanabe. 1999. Complete DNA Sequence of the Mitochondrial Genome of the Ascidian Halocynthia roretzi (Chordata, Urochordata). Genetics, 153, 1851-1862
  22. Zane, L., L. Bargelloni and T. Patamello. 2002. Strategles for microsatellite isolation. Mol. Ecol., 11, 1-16 https://doi.org/10.1046/j.0962-1083.2001.01418.x