• 제목/요약/키워드: polyvinyl alcohol(PVA)

검색결과 306건 처리시간 0.021초

Effect of Porcine Serum as Macromolecule on the Meiotic Maturation and Embryonic Development of Porcine Oocytes

  • Son, Jong-Min;Lee, Doo-Soo;Lee, Eon-Song;Cho, Jong-Ki;Shin, Sang-Tae
    • 한국수정란이식학회지
    • /
    • 제23권2호
    • /
    • pp.93-100
    • /
    • 2008
  • This study was conducted to establish an in vitro maturation (IVM) system by selection of efficient macromolecule in the porcine in vitro production (IVP) technology. To choose the efficient macromolecules in the development of porcine embryos, the effects of 3 kinds of macromolecules (porcine serum; PS, porcine follicular fluid; pFF, and polyvinyl alcohol; PVA) supplemented in IVM media on the maturation, cleavage, and development rates to blastocyst of parthenogenetic activation (PA) and in vitro fertilization (IVF) embryos were examined. The maturation rates of porcine oocytes in media supplemented with PS were significantly higher than those with pFF and PVA (92.4% vs. 85.4%, 77.1%; p<0.05). In the cleavage and development to blastocyst rates, supplement with PS or pFF in the IVM media was more effective than PA. However, there were no significant differences in cleavage and development to blastocyst between PS and pFF group. From the results of this study, it was demonstrated that PS was optimal macromolecule in the porcine IVM media.

슬러리 코팅 공정으로 제조된 Fe 폼의 기공 특성에 미치는 바인더 함량의 영향 (The Effect of Binder Content for the Pore Properties of Fe Foam Fabricated by Slurry Coating Process)

  • 최진호;양상선;김양도;윤중열
    • 한국분말재료학회지
    • /
    • 제20권6호
    • /
    • pp.439-444
    • /
    • 2013
  • Fe foam with above 90% porosity and 2 millimeter pore size was successfully fabricated by a slurry coating process. In this study, the binder contents were controlled to produce the Fe foam with different pore size, strut thickness and porosity. Firstly, the slurry was prepared by uniform mixing with Fe powders, distilled water and polyvinyl alcohol(PVA) as initial materials. After slurry coating on the polyurethane(PU) foam the sample was dried at $80^{\circ}C$. The PVA and PU foams were then removed by heating at $700^{\circ}C$ for 3 hours. The debinded samples were subsequently sintered at $1250^{\circ}C$ with holding time of 3 hours under hydrogen atmosphere. The three dimensional geometries of the obtained Fe foams with open cell structure were investigated using X-ray micro CT(computed tomography) as well as the pore morphology, size and phase.

유기첨가제가 수계에서 제조된 지르코니아 과립의 미세구조 및 성형밀도에 미치는 영향 (Effect of Organic Additives on Microstructure and Green Density of Zirconia Granules Using Water Solvent)

  • 정지환;이상진
    • 한국분말재료학회지
    • /
    • 제24권2호
    • /
    • pp.147-152
    • /
    • 2017
  • Spherical-type zirconia granules are successfully fabricated by a spray-drying process using a water solvent slurry, and the change in the green density of the granule powder compacts is examined according to the organic polymers used. Two organic binders, polyvinyl alcohol (PVA) and 2-hydroxyethyl methacrylate (HEMA), which are dissolved in a water solvent and have different degrees of polymerization, are applied to the slurry with a plasticizer (polyethylene glycol). The granules employing a binder with a higher degree of polymerization (PVA) are not broken under a uniaxial press; consequently, they exhibit a poor green density of $2.4g/cm^3$. In contrast, the granule powder compacts employing a binder with a lower degree of polymerization (HEMA) show a higher density of $2.6g/cm^3$ with an increase in plasticizer content. The packing behavior of the granule powders for each organic polymer system is studied by examining the microstructure of the fracture surface at different applied pressures.

호기성 분해, 혐기성 분해 및 독성을 고려한 생분해도 지표 개발 (Biodegradability Index Development Based on Aerobic Biodegradation, Anaerobic Biodegradation, and Toxicity Test)

  • 유규선;신항식
    • 상하수도학회지
    • /
    • 제24권5호
    • /
    • pp.603-608
    • /
    • 2010
  • More than 8 millions of chemical have been used for human activities and lots of chemicals can not be degraded by microbial activities in this world. To show the biodegradability of a chemical, biodegradability index (B.I.) is suggested using aerobic biodegradability by $BOD_5$/COD, anaerobic biodegradability by methane potential (M.P.) and toxicity by the luminiscent bacteria. In this study, PVA (polyvinyl alcohol), HEC (hydroxy ethyl cellulose), 2,4,6-TCP (tri-chloro phenol) and 2,4-DCP (di-chloro phenol) are used for test chemicals. Though they show little toxicity, PAV and HEC have low B.I. because they are polymers having high molecular weight. That means that there are no bacteria that has enzyme to degrade polymer molecules. Also, anaerobic treatment is suggested better than aerobic treatment from B.I. 2,4,6-TCP and 2,4-DCP show high toxicity and have low B.I. Their low biodegradabilities seem to be originated from their toxicities. If B.I. is used in wastewater treatment, better treatment process can be suggested and finally it can lead our society to make more environment-friendly chemicals.

Polysulfone/nanocomposites mixed matrix ultrafiltration membrane for the recovery of Maillard reaction products

  • Basu, Subhankar;Mukherjee, Sanghamitra;Balakrishnan, Malini;Deepthi, M.V.;Sailaja, R.R.N.
    • Membrane and Water Treatment
    • /
    • 제9권2호
    • /
    • pp.105-113
    • /
    • 2018
  • Maillard reaction products like melanoidins present in industrial fermentation wastewaters are complex compounds with various functional properties. In this work, novel ultrafiltration (UF) mixed matrix membrane (MMM) composed of polysulfone (PSF) and nanocomposites was prepared through a phase inversion process for the recovery of melanoidins. Nanocomposites were prepared with acid functionalized multiwalled carbon nanotubes (MWCNTs) as the reinforcing filler for chitosan-thermoplastic starch blend. Higher nanocomposites content in the PSF matrix reduced the membrane permeability and melanoidins retention indicating tighter membrane with surface defects. The membrane surface defects could be sealed with dilute polyvinyl alcohol (PVA) solution. The best performing membrane (1% nanocomposites in 18% PSF membrane sealed with 0.25% PVA coating) resulted in uniform melanoidins retention of 98% and permeability of 3.6 L/m2 h bar over a period of 8h. This demonstrates a low fouling PSF membrane for high melanoidins recovery.

Preparation of Calcium Silicate Hydrate Extrudates and Their Phosphate Adsorption Studies

  • Rallapalli, Phani Brahma Somayajulu;Ha, Jeong Hyub
    • 공업화학
    • /
    • 제30권5호
    • /
    • pp.562-568
    • /
    • 2019
  • Cylindrical shape extrudates of calcium silicate hydrate (CSH) were prepared using different percentages of polyvinyl alcohol (PVA) / sodium alginate (SA) mixtures as binders and an aqueous solution containing 6% $H_3BO_3$ and 3% $CaCl_2$ was used as a cross linking agent. As the quantity of alginate increases, the phosphate removal efficiency and capacity were decreased. Among four different extrudate samples, the sample prepared by 8% PVA + 2% SA showed the highest phosphate removal efficiency (59.59%) and capacity (29.97 mg/g) at an initial phosphate concentration of 100 ppm and 2.0 g/L adsorbent dosage. Effects of the adsorbent dosage, contact time and initial phosphate concentration on the sample were further studied. The removal efficiency and capacity obtained by a 4.0 g/L adsorbent dose at an initial phosphate concentration of 100 ppm in 3 h were 79.38% and 19.96 mg/g, respectively. The experimental data of kinetic and isotherm measurements followed the pseudo-second-order kinetic equation and Langmuir isotherm model, respectively. These results suggested that the phosphate removal was processed via a chemisorption and a monolayer coverage of phosphate anions was on the CSH surface. The maximum adsorption capacity ($q_{max}$) was calculated as 23.87 mg/g from Langmuir isotherm model.

Mechanical performance of fiber-reinforced recycled refractory brick concrete exposed to elevated temperatures

  • Nematzadeh, Mahdi;Baradaran-Nasiria, Ardalan
    • Computers and Concrete
    • /
    • 제24권1호
    • /
    • pp.19-35
    • /
    • 2019
  • In this paper, the effect of the type and amount of fibers on the physicomechanical properties of concrete containing fine recycled refractory brick (RRB) and natural aggregate subjected to elevated temperatures was investigated. For this purpose, forta-ferro (FF), polypropylene (PP), and polyvinyl alcohol (PVA) fibers with the volume fractions of 0, 0.25, and 0.5%, as well as steel fibers with the volume fractions of 0, 0.75, and 1.5% were used in the concrete containing RRB fine aggregate replacing natural sand by 0 and 100%. In total, 162 concrete specimens from 18 different mix designs were prepared and tested in the temperature groups of 23, 400, and $800^{\circ}C$. After experiencing heat, the concrete properties including the compressive strength, ultrasonic pulse velocity (UPV), weight loss, and surface appearance were evaluated and compared with the corresponding results of the reference (unheated) specimens. The results show that using RRB fine aggregate replacing natural fine aggregate by 100% led to an increase in the concrete compressive strength in almost all the mixes, and only in the PVA-containing mixes a decrease in strength was observed. Furthermore, UPV values at $800^{\circ}C$ for all the concrete mixes containing RRB fine aggregate were above those of the natural aggregate concrete specimens. Finally, regarding the compressive strength and UPV results, steel fibers demonstrated a better performance relative to other fiber types.

다양한 고체분산체 제조방법으로 제조한 실로도신 함유 고체분산체의 비교 및 특성분석 (Comparison and Characterization of Silodosin-loaded Solid Dispersions Prepared by Various Solid Dispersion Preparation Methods)

  • 이수만;송다영;김경수
    • 한국분말재료학회지
    • /
    • 제31권3호
    • /
    • pp.263-271
    • /
    • 2024
  • This study focused on improving the solubility of silodosin, a drug poorly soluble in water, by utilizing solid dispersions. Three types of dispersions were examined and compared against the drug powder: surface-attached (SA), solvent-wetted (SW), and solvent-evaporated (SE). Polyvinyl alcohol (PVA) was identified as the most effective polymer in enhancing solubility. These dispersions were prepared using spray-drying techniques with silodosin and PVA as the polymer, employing solvents such as water, ethanol, and a water-acetone mix. The physicochemical properties and solubility of the dispersions were evaluated. The surface-attached dispersions featured the polymer on a crystalline drug surface, the solvent-wetted dispersions had the amorphous drug on the polymer, and the solvent-evaporated dispersions produced nearly round particles with both components amorphous. Testing revealed that the order of improved solubility was: solvent-evaporated, solvent-wetted, and surface-attached. The results demonstrated that the preparation method of the solid dispersions significantly impacted their physicochemical properties and solubility enhancement.

PVA를 이용한 Solution-Polymerization 합성법에 의한 Mullite-Cordierite 복합분말의 합성 (A Synthesis of Mullite-Cordierite Composite Powders by Solution-Polymerization Route Based on Polyvinyl Alcohol)

  • 이용석;이병하
    • 한국세라믹학회지
    • /
    • 제41권9호
    • /
    • pp.663-669
    • /
    • 2004
  • Mullite와 cordierite는 우수한 열적, 화학적 특성을 나타내는 안정된 산화물로서 다양한 구조재료 및 전자재료에 사용되어지고 있으나, mullite의 경우 내열충격성이, cordierite의 경우 고온강도가 떨어지는 단점이 있다. 이와 같은 단점을 서로 보완하기 위한 mullite-cordierite 복합체에 대한 연구가 진행되고 있다 본 연구에서는 fused silica, aluminium nitrate, magnesium nitrate와 PVA의 혼합을 이용한 solution-polymerization 합성법에 의해, mullite-cordierite복합분말을 합성하고 생성상 및 결정성, 밀도 및 비표면적 등의 특성을 분석하였다 그 결과, 본 실험의 모든 조성에서 있어서 130$0^{\circ}C$로 열처리하였을 경우, mullite와 cordierite의 상이 공존하는 복합분말이 생성되는 것을 확인할 수 있었다. 이 mullite-cordierite복합 분말을 planetary milli로 1시간 분쇄하였을 때 비표면적은 약 20 $m^2$/g로서 미립의 분말이 확인되어졌고, 분쇄시간의 증가에 따라 4시간에서는 23$m^2$/g, 8시간에서는 24$m^2$/g로 비표면적이 증가하였다.

Fumed Silica/Ceramic Wool 무기복합재의 제조 및 열적 성질 (Fabrication and Thermal Properties of Fumed Silica/Ceramic Wool Inorganic Composites)

  • 안원술
    • 한국산학기술학회논문지
    • /
    • 제15권6호
    • /
    • pp.4007-4012
    • /
    • 2014
  • Fumed Silica와 섬유상의 Ceramic Wool을 사용하여 경량의 무기복합재 샘플을 제조하기 위한 조건과 만들어진 샘플의 단열특성을 살펴보았다. 정량된 Fumed Silica 미세분말과 Ceramic Wool을 혼합한 반죽을 몰드에 넣고 상온에서 안정화시킨 후에 $150^{\circ}C$ 오븐에서 완전히 건조하여 샘플을 제작하였다. 소량의 PVA 계면접착제를 사용하지 않는 샘플에서는 Fumed Silica 조성비가 10-70wt% 사이에서 벌크밀도가 0.6-0.8 $g/cm^3$이었으며, 50wt% 이상의 샘플에서는 건조 수축으로 인한 크랙현상이 관찰되었다. 그러나 3wt%의 PVA를 사용한 샘플의 벌크밀도는 절반 정도로 크게 감소하면서도 기계적 특성과 단열성은 향상되었다. 만들어진 샘플들은 $800^{\circ}C$ 이상의 고온에서도 열크랙 없이 안정한 열적 특성을 보여주었으며, 샘플의 단열성은 Fumed Silica 조성비가 높아질수록 향상되는 것으로 나타났다. Fumed Silica 30wt%인 샘플의 열전도도는 $500^{\circ}C$에서 약 0.08 $W/m^{\circ}K$의 우수한 단열 특성을 보여 주었다.