• 제목/요약/키워드: polyurethane/clay

검색결과 20건 처리시간 0.026초

초음파 처리와 나노클레이 농도가 나노클레이/폴리우레탄 폼의 물성에 미치는 영향 (Influence of Ultrasonic Treatment and Nano-Clay content on the Properties of Nano-Clay/Polyurethane Foam)

  • 허기영;임순호;김대흠
    • Korean Chemical Engineering Research
    • /
    • 제47권2호
    • /
    • pp.208-212
    • /
    • 2009
  • 나노클레이는 높은 종횡비와 불연성, 나노 스케일의 크기로 인해 고분자 나노복합체의 첨가물로 널리 이용되고 있다. 최근엔 나노클레이를 폴리우레탄 폼에 적용함으로써, 열적 특성 및 기계적 특성이 향상되었다는 연구결과들이 있다. 본 연구에서는 폴리우레탄 폼의 물성에 대한 나노클레이의 농도와 초음파 분산의 효과에 대해 기술하였다. 제조된 나노클레이/폴리우레탄 폼의 특성은 복원시간, 압축변형, 셀의 모양 및 인장 실험 등을 통해 분석되었다. 그 결과, 초음파처리는 나노클레이의 분산에 매우 효과적이었고, 소량 첨가 시에는 폼 물성의 향상을 보였으나, 3 wt% 이상의 나노클레이 첨가는 오히려 물성의 저하를 초래함을 확인할 수 있었다. 특히, 초음파를 통해 분산시킨 20A 나노클레이 1 wt%가 첨가된 폴리우레탄 폼이 균일한 셀 사이즈와 뛰어난 치수안정성 등의 가장 최적화된 물성을 나타내었다. 본 연구결과는 건축용 단열재 등의 제조에 적용할 수 있을 것이다.

나노점토가 연질 폴리우레탄/점토 다공성 나노복합체의 기계적 특성에 미치는 영향 (Effect of Nanoclay on Mechanical Properties of Porous Flexible Polyurethane/Clay Nanocomposites)

  • 옥경민;김규헌;김경록;김동현;김춘환;박홍채;윤석영
    • 한국재료학회지
    • /
    • 제23권7호
    • /
    • pp.366-372
    • /
    • 2013
  • Flexible polyurethane/clay porous nanocomposite foams were synthesized using natural and organically modified montmorillonite clays such as bentonite, closite 10A and closite 30B. The content of nanoclays was varied from 1 to 5 wt% of polyol. Dispersion of clay in Polyurethane(PU) matrix was investigated by X-ray diffraction(Cu-$K{\alpha}$ rays of wavelength $1.54{\AA}$) using an X-ray diffractometer. Also, we determined that the thermal resistance of PU foam increased with added clay, compared to that of pure PU foam. The cell size and the fraction of open cells of the precursor foam were controlled by the addition of clay to the polyurethane foam. Modified clays were found to be more efficient cell openers than the unmodified clay. In addition, the tensile strength and elongation of the polyurethane/clay porous nanocomposites were examined. Increasing clay content increased the mechanical properties of the composites, such as tensile strength, and elongation at break. However, increasing the content over 5 wt% deteriorated the properties of the composites. We found that the nanofillers(bentonite, closite 10A and closite 30B) improved the thermal stability of the nanocomposite foam. The nanocomposite foam containing 3 wt% of closite 30B exhibited the best tensile strength and thermal stability.

환경친화적 수분산성 폴리우레탄/Clay 나노복합체의 제조 및 물성에 관한 연구 (Synthesis and Properties of Environmentally-friendly Aqueous Polyurethane Dispersion/Clay nanocomposites)

  • 단철호;김정호
    • 청정기술
    • /
    • 제12권1호
    • /
    • pp.11-18
    • /
    • 2006
  • poly[hexamethylene carbonate]glycol(PHMCG)과 isophorone diisocyanate (IPDI), dimethylol propionic acid(DMPA)를 이용하여 수분산성 폴리우레탄을 합성하였다. 또한 여기에 나노 clay(PM) 및 이를 각기 다른 유기화제로 개질시킨 C15A와 C30B를 첨가하여 폴리우레탄/clay 나노복합재료를 제조하였다. 제조된 나노복합재료에서의 clay의 분산정도를 XRD를 이용하여 조사하였으며 clay가 첨가된 경우의 기계적 물성 및 열적성질을 UTM 과 TGA를 통하여 분석한 결과, C15A가 첨가된 경우 나노clay가 폴리우레탄에 가장 잘 분산된 것으로 관찰되었으며, 기계적 물성과 열적 물성이 C30B 또는 PM을 첨가한 경우보다 높게 측정되었다. 이로부터 clay에서 개질유기화제의 종류 및 함량이 나노복합재료의 최종물성에 영향을 주는 것을 알 수 있었다.

  • PDF

Improving the Properties of Industrial Polyurethane with Nanoclay, Hectorite

  • Seydibeyoglu, M.O.;Guner, F.S.;Ece, I.;Isci, S.;Gungor, N.
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.281-281
    • /
    • 2006
  • In this study, the polyurethane which has versatile applications has been reinforced with the natural clay, hectorite. The hectorite has better properties than montmorillonite. There are studies on polyurethane and montmorillonite but polyurethane and hectorite composite is published first time. Polyurethane is industrial polyurethane which makes the study to be applicable to the industry. Exfoliated structure has been obtained without using organic modifiers due to the hydrophilic nature of the polymer matrix and the mineral clay. Mechanical properties have been improved as well.

  • PDF

Effects of Organoclay on the Thermal Insulating Properties of Rigid Polyurethane Foams Blown by Environmentally Friendly Blowing Agents

  • Kim, Youn-Hee;Choi, Seok-Jin;Kim, Ji-Mun;Han, Mi-Sun;Kim, Woo-Nyon;Bang, Kyu-Tae
    • Macromolecular Research
    • /
    • 제15권7호
    • /
    • pp.676-681
    • /
    • 2007
  • A process designed to synthesize rigid polyurethane foam (PUF) with insulative properties via the modulation of PUF cell size via the addition of clay and the application of ultrasound was assessed. The blowing agents utilized in this study include water, cyclopentane, and HFC-365mfc, all of which are known to be environmentally-friendly blowing agents. The rigid PUFs were prepared from polymeric 4,4'-diphenylmethane diisocyanate (PMDI) and polyether polyol with a density of $50kg/m^3$. In addition, rigid PUFs/clay nanocomposites were synthesized with clay modified by PMDI with and without the application of ultrasound. The PUF generated using water as a blowing agent evidenced the highest tensile strength. The tensile strength of the PUF/nanocomposites was higher than that of the neat PUF and the strength was even higher with the application of ultrasound. The cell size of the PUF/clay nanocomposites was less than that of the neat PUF, regardless of the type of blowing agent utilized. It appears that the higher tensile strength and lower cell size of the PUF/clay nanocomposites may be attributable to the uniform dispersion of the clay via ultrasonic agitation. The thermal conductivity of the PUF/clay nanocomposites generated with HCFC-141b evidenced the lowest value when PUF/clay nanocomposites were compared with other blowing agents, including HFC-365mfc, cyclopentane, and water. Ultrasound has also proven effective with regard to the reduction of the thermal conductivity of the PUF/clay nanocomposites with any of the blowing agents employed in this study. It has also been suggested that the uniformly dispersed clay particles in the PUF matrix function as diffusion barriers, which prevent the amelioration of the thermal insulation property.

One-Pack Cross-linkable Waterborne Methyl Ethyl Ketoxime-Blocked Polyurethane/Clay Nanocomposite Dispersions

  • Subramani Sankaraiah;Lee Jung Min;Kim Jung Uyun;Cheong In Woo
    • Macromolecular Research
    • /
    • 제13권5호
    • /
    • pp.418-426
    • /
    • 2005
  • One-pack cross-linkable nanocomposites of waterborne methyl ethyl ketoxime (MEKO)-blocked aromatic polyurethane dispersion (BPUD) reinforced with organoclay (quaternary ammonium salt of Cloisite 25A) were synthesized by the acetone process using 4,4'-methylenedi-p-phenyl diisocyanate (MDl), poly(tetramethylene) glycol (PTMG), dimethylol propionic acid (DMPA), and methyl ethyl ketoxime (MEKO). Particle size, viscosity, and storage stability of these nanocomposites were investigated. TEM and XRD studies confirmed that the silicate layers of organophilic clay were exfoliated and intercalated at a nanometer-scale in the BPUD matrix.

Sound Damping of a Polyurethane Foam Nanocomposite

  • Sung, Chang-Hyun;Lee, Kyung-Sick;Lee, Kyu-Se;Oh, Seung-Min;Kim, Jae-Hoon;Kim, Min-Seok;Jeong, Han-Mo
    • Macromolecular Research
    • /
    • 제15권5호
    • /
    • pp.443-448
    • /
    • 2007
  • To improve the sound damping effect of flexible polyurethane foam, with an open-cell structure, various plate-like fillers, such as bentonite, organophilic clay and sodium montmorillonite intercalated with poly(ethylene glycol), were incorporated for the creation of nanocomposites. The plate-like fillers effectively improved the sound damping within the high frequency range. The structures of the nanocomposites and foam were examined using X-ray diffraction and scanning electron microscopy. The mechanical properties and flammability of the foams were also examined.

Mechanical characterization of a self-compacting polymer concrete called isobeton

  • Boudjellal, K.;Bouabaz, M.;Belachia, M.
    • Structural Engineering and Mechanics
    • /
    • 제57권2호
    • /
    • pp.357-367
    • /
    • 2016
  • This paper illustrates an experimental study on a self compacting polymer concrete called isobeton made of polyurethane foam and expanded clay. Several experiments were conducted to characterize the physic-mechanical properties of the considered material. Application of the Linear Elastic Fracture Mechanics (LEFM) and determining the toughness of two isobetons based on Belgian and Italian clay, was conducted to determine the stress intensity factor $K_{IC}$ and the rate of releasing energy $G_{IC}$. The material considered was tested under static and dynamic loadings for two different samples with $10{\times}10{\times}40$ and $10{\times}15{\times}40cm$ dimensions. The result obtained by the application of the Linear Elastic Fracture Mechanics (LEFM) shows that is optimistic and fulfilled the physic-mechanical requirement of the study.

전기방사법을 이용한 폴리(비닐 알코올)/수분산 폴리우레탄/몬모릴로나이트 나노복합섬유의 제조 및 특성분석 (Electrospinning Fabrication and Characterization of Poly(vinyl alcohol)/Waterborne Polyurethane/Montmorillonite Nanocomposite Nanofibers)

  • 김인교;염정현
    • 폴리머
    • /
    • 제35권6호
    • /
    • pp.553-557
    • /
    • 2011
  • 전기방사법을 이용하여 폴리(비닐 알코올)(poly(vinyl alcohol), PVA)/수분산 폴리우레탄(waterborne polyurethane, WBPU)/montmorillonite clay(MMT) 나노복합섬유를 제조하고 특성을 분석하였다. Scanning electron microscopy(SEM), transmission electron microscopy(TEM), X선 회절, thermal gravimetric analyzer(TGA) 의 분석장비들을 이용하여 제조된 나노복합섬유의 형태와 구조적, 열적특성을 확인한 결과, 평균직경이 600~900 nm인 나노복합섬유들이 성공적으로 제조되었으며, MMT가 나노섬유 내에 완전박리되어 기존의 고분자 나노섬유에 비해 열적성질이 향상되었음을 확인할 수 있었다. 본 연구를 통해 제조된 나노복합섬유는 친수성이고 생체친화적인 재료들을 이용하여 제조되었으며, 의료 분야를 비롯하여 의류 및 산업용 코팅제, 필터 등의 분야로 이용이 가능할 것으로 보인다.

Effects of Nucleating Agents on the Morphological, Mechanical and Thermal Insulating Properties of Rigid Polyurethane Foams

  • Kang, Ji-Woung;Kim, Ji-Mun;Kim, Min-Soo;Kim, Youn-Hee;Kim, Woo-Nyon;Jang, Won;Shin, Dae-Sig
    • Macromolecular Research
    • /
    • 제17권11호
    • /
    • pp.856-862
    • /
    • 2009
  • This study examined the effects of liquid and solid additives on the morphological, mechanical and thermal insulating properties of rigid polyurethane foams (PUFs). The PUFs synthesized with tetramethylsilane (TEMS) as a liquid-type additive showed a smaller average cell size and lower thermal conductivity than those with the aerosil 200 and clay 30B as solid-type additives. When TEMS was added, the average cell size of the PUF became more uniform and finer due to the reduced surface tension of the polymer solution, which increased the nucleation rate and number of bubbles produced and reduced cell size. The PUFs with TEMS showed the highest closed cell contents among the PUFs prepared using TEMS, aerosil 200 and clay 30B. This suggests that the insulation properties of PUF can be determined by both the size of the cell structure and the amount of closed cell contents in the system. The compression and flexural strengths of the PUF increased slightly when the aerosil 200, clay 30B and TEMS were added compared those of the neat PUF. The reaction profiles of the PUFs showed a similar gel and tack tree time with the reaction time among the PUFs synthesized with three different additives and neat PUF. This suggests that the nucleating additives used in this study do not affect the bubble growth of the chemical reaction, and the additives may act as nucleating agents during the formation of PUF. From the above results of the cell size, thermal conductivity, closed cell contents and reaction profile of the PUFs, liquid-type nucleating agent, such as TEMS, is more effective in decreasing the thermal conductivity of the PUF than solid-type nucleating agent, such as aerosil 200 and clay 30B.