Effects of Nucleating Agents on the Morphological, Mechanical and Thermal Insulating Properties of Rigid Polyurethane Foams

  • Kang, Ji-Woung (Department of Chemical and Biological Engineering, Korea University) ;
  • Kim, Ji-Mun (Department of Chemical and Biological Engineering, Korea University) ;
  • Kim, Min-Soo (Department of Chemical and Biological Engineering, Korea University) ;
  • Kim, Youn-Hee (Department of Chemical and Biological Engineering, Korea University) ;
  • Kim, Woo-Nyon (Department of Chemical and Biological Engineering, Korea University) ;
  • Jang, Won (Samsung Electronics Co., Ltd.) ;
  • Shin, Dae-Sig (Samsung Electronics Co., Ltd.)
  • Published : 2009.11.25

Abstract

This study examined the effects of liquid and solid additives on the morphological, mechanical and thermal insulating properties of rigid polyurethane foams (PUFs). The PUFs synthesized with tetramethylsilane (TEMS) as a liquid-type additive showed a smaller average cell size and lower thermal conductivity than those with the aerosil 200 and clay 30B as solid-type additives. When TEMS was added, the average cell size of the PUF became more uniform and finer due to the reduced surface tension of the polymer solution, which increased the nucleation rate and number of bubbles produced and reduced cell size. The PUFs with TEMS showed the highest closed cell contents among the PUFs prepared using TEMS, aerosil 200 and clay 30B. This suggests that the insulation properties of PUF can be determined by both the size of the cell structure and the amount of closed cell contents in the system. The compression and flexural strengths of the PUF increased slightly when the aerosil 200, clay 30B and TEMS were added compared those of the neat PUF. The reaction profiles of the PUFs showed a similar gel and tack tree time with the reaction time among the PUFs synthesized with three different additives and neat PUF. This suggests that the nucleating additives used in this study do not affect the bubble growth of the chemical reaction, and the additives may act as nucleating agents during the formation of PUF. From the above results of the cell size, thermal conductivity, closed cell contents and reaction profile of the PUFs, liquid-type nucleating agent, such as TEMS, is more effective in decreasing the thermal conductivity of the PUF than solid-type nucleating agent, such as aerosil 200 and clay 30B.

Keywords

References

  1. M. A. Ferrero-Heredia, J. Day, and W. J. Ward, J. Cell. Plast., 31, 565 (1995) https://doi.org/10.1177/0021955X9503100605
  2. T. Hashida, T. Uedo, H. Nakamoto, and M. Suzuki, High Perform. Polym., 10, 81 (1998) https://doi.org/10.1088/0954-0083/10/1/010
  3. Y. H. Kim, S. J. Choi, J. M. Kim, M. S. Han, and W. N. Kim, Macromol. Res., 15, 676 (2007) https://doi.org/10.1007/BF03218949
  4. M. S. Koo, K. S. Chung, and J. R. Youn, Polym. Eng. Sci., 41, 1177 (2001) https://doi.org/10.1002/pen.10819
  5. G. Oertel, Polyurethane Handbook, Hanser Publishers, New York, 1993
  6. D. Klempner and K. C. Frisch, Handbook of Polymeric Foams and Foam Technology, Oxford University Press, New York, 1991
  7. H. Lim, S. H. Kim, and B. K. Kim, J. Appl. Polym. Sci., 110, 49 (2008) https://doi.org/10.1002/app.28571
  8. M. S. Han, Y. H. Kim, S. J. Han, S. J. Choi, S. B. Kim, and W. N. Kim, J. Appl. Polym. Sci., 110, 376 (2008) https://doi.org/10.1002/app.28521
  9. S. M. Kang, D. C. Ku, J. H. Lim, Y. K. Yang, N. S. Kwak, and T. S. Hwang, Macromol. Res., 13, 212 (2005) https://doi.org/10.1007/BF03219054
  10. S. Subramani, J. M. Lee, J. H. Kim, and I. W. Cheong, Macromol. Res., 13, 418 (2005) https://doi.org/10.1007/BF03218475
  11. H. D. Park, J. W. Bae, K. D. Park, T. Ooya, N. Yui, J. H. Jang, D. K. Han, and J. W. Shin, Macromol. Res., 14, 73 (2006) https://doi.org/10.1007/BF03219071
  12. D. I. Cha, K. W. Kim, G. H. Chu, H. Y. Kim, K. H. Lee, and N. Bhattarai, Macromol. Res., 14, 331 (2006) https://doi.org/10.1007/BF03219090
  13. J. K. Yun, H. J Yoo, and H. D. Kim, Macromol. Res., 15, 22 (2007) https://doi.org/10.1007/BF03218748
  14. B. S. Min and S. W. Ko, Macromol. Res., 15, 225 (2007) https://doi.org/10.1007/BF03218780
  15. C. H. Sung, K. S. Lee, K. S. Lee, S. M. Oh, J. H. Kim, M. S. Kim, and H. M. Jeong, Macromol. Res., 15, 443 (2007) https://doi.org/10.1007/BF03218812
  16. A. V. Raghu, H. M. Jeong, J. H. Kim, Y. R. Lee, Y. B. Cho, and K. Sirsalmath, Macromol. Res., 16, 194 (2008) https://doi.org/10.1007/BF03218852
  17. M. S. Han, S. J. Choi, J. M. Kim, Y. H. Kim, W. N. Kim, H. S. Lee, and J. Y. Sung, Macromol. Res., 17, 44 (2009) https://doi.org/10.1007/BF03218600
  18. W. J. Seo, Y. T. Sung, S. J. Han, Y. H. Kim, O. H. Ryu, H. S. Lee, and W. N. Kim, J. Appl. Polym. Sci., 101, 2879 (2006) https://doi.org/10.1002/app.23357
  19. W. J. Seo, Y. T. Sung, S. G. Kim, Y. B. Lee, K. H. Choe, S. H. Choe, S. B. Kim, and W. N. Kim, J. Appl. Polym. Sci., 102, 3764 (2006) https://doi.org/10.1002/app.24735
  20. H. Lim, S. H. Kim, and B. K. Kim, Polym. Adv. Technol., 19, 1729 (2008) https://doi.org/10.1002/pat.1188
  21. S. A. Baser and D. V. Khakhar, Polym. Eng. Sci., 34, 642 (1994) https://doi.org/10.1002/pen.760340805
  22. W. J. Seo, H. C. Jung, J. C. Hyun, W. N. Kim, Y. B. Lee, K. H. Choe, and S. B. Kim, J. Appl. Polym. Sci., 90, 12 (2003) https://doi.org/10.1002/app.12238
  23. X. Cao, L. J. Lee, T. Widya, and C. Macosko, Polymer, 46, 775 (2005) https://doi.org/10.1016/j.polymer.2004.11.028
  24. M. Modesti, A. Lorenzetti, and S. Besco, Polym. Eng. Sci., 47, 1351 (2007) https://doi.org/10.1002/pen.20819
  25. F. A. Shutov, Adv. Polym. Sci., 51, 155 (1983) https://doi.org/10.1007/BFb0017587
  26. C. D. Han and H. J. Yoo, Polym. Eng. Sci., 21, 518 (1981) https://doi.org/10.1002/pen.760210903
  27. J. S. Colton and N. P. Suh, Polym. Eng. Sci., 27, 485 (1987) https://doi.org/10.1002/pen.760270702
  28. K. C Russell, Adv. Colloid Interf. Sci., 13, 205 (1980) https://doi.org/10.1016/0001-8686(80)80003-0
  29. D. Niyogi, R. Kumar, and K. S. Gandhi, Polym. Eng. Sci., 39, 199 (1999) https://doi.org/10.1002/pen.11408