• Title/Summary/Keyword: polysulfone hollow fiber membrane

Search Result 43, Processing Time 0.023 seconds

Preparation of Polysulfone Composite Ultrafiltration Hollow Fiber Membranes Incorporating Nano-size Fumed Silica with Enhanced Antifouling Properties (나노 크기의 Fumed Silica가 함유된 Polysulfone 한외여과 중공사막 제조 및 내오염성 분석)

  • Kang, Yesol;Lim, Joohwan;Kim, In S.
    • Membrane Journal
    • /
    • v.28 no.6
    • /
    • pp.379-387
    • /
    • 2018
  • This study was conducted to improve the membrane characteristics and performance by increasing hydrophilicity by adding additives to the ultrafiltration polysulfone (PSf) hollow fiber membrane. The mixed matrix membranes (MMMs) were prepared by dispersing 15 nm of fumed silica (FS) in the spinning solution at 0.1, 0.3 and 0.5 wt%. SEM analysis was carried out to confirm the cross-section and surface condition. It was confirmed that mean pore radius of the hollow fiber increased by 4 nm as FS was added. In addition, contact angle measurement was carried out for the hydrophilicity analysis of hollow fiber membranes, and it was confirmed that the hydrophilicity of MMMs were increased by adding of FS. In the case of water permeability, the membrane including FS showed 91~96 LMH and showed 5~11% more increase than PSf membrane. In the antifouling performance test, relative flux reduction ratios of FS mixed hollow fiber membranes were lower than that of PSf membranes, and it was confirmed that increase of hydrophilicity hinders adsorption of hydrophobic BSA on the membrane surface.

Capture and Reduction Technology of Greenhouse Gas Using Membrane from Anaerobic Digester Gas (분리막을 이용한 혐기성 소화가스로부터 온실가스 회수저감 기술)

  • Hwang, Cheol-Won;Jeong, Chang-Hun
    • Journal of Environmental Science International
    • /
    • v.20 no.10
    • /
    • pp.1233-1241
    • /
    • 2011
  • The main objective of this experimental investigation was $CH_4$ recovery from biogas generated in municipal and wastewater treatment plant. The polysulfone hollow fiber membrane was prepared in order to investigate the permeation properties of $CH_4$ and $CO_2$. Permeability of $CO_2$ in Polysulfone membrane was 11-fold higher than of $CH_4$ gas. A membrane pilot plant for upgrading biogas was constructed and operated at a municipal wastewater treatment plant. The raw biogas contained 66 ~ 68 Vol % $CH_4$, the balance being mainly $CO_2$. The effect of the operating pressure of feed and permeate side and feed flowrate on $CH_4$ recovery concentration and efficiency were investigated with double stage membrane pilot plant. The $CH_4$ concentration in the retentate stream was raised in these tests to 93 Vol % $CH_4$.

Effect of Non-ionic Additive on Morphology and Gas Permeation Properties of Polysulfone Hollow Fiber Membrane (비이온계 첨가제에 의한 폴리술폰계 중공사 막의 모폴로지 조절과 기체투과 특성)

  • Lee, Hye Jin;Koh, Mi Jin;Kim, Duek Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.22 no.3
    • /
    • pp.224-233
    • /
    • 2012
  • To improve permeation performance of gas separation membrane, polysulfone hollow fiber membrane was prepared by wet-dry phase inversion method using Triton X-100 as non-ionic additive. And variation of gas permeation behavior by additive was investigated. Various spinning conditions such as air gap, concentration of polymer, dope tank temperature were controlled and these effects were studied. The morphology and gas permeation property of hollow fiber membranes were investigated using scanning electron microscope (SEM) and bubble flow meter respectively. We confirmed that the membranes added with Triton X-100 had a smooth external skin at various air gap length conditions. The macrovoids of these hollow fiber membranes were more developed with increase of air-gap from 4 to 90 cm and that induced higher permeance. The permeance of polysulfone membranes has the higher value at comparatively lower concentration polymer (30 wt% polysulfone) and lower concentration of additive (15 wt% Triton X-100). When temperature in dope tank was controlled, the membranes prepared at $100^{\circ}C$ showed low permeance because of volatilization of additive and solvent.

Highly Efficient Biogas Upgrading Process Using Polysulfone Hollow Fiber Membrane at Low Temperature (폴리술폰 중공사막을 이용한 바이오가스 고순도화 고효율 저온 분리 공정)

  • Kim, Se Jong;Han, Sang Hoon;Yim, Jin Hyuk;Lee, Chung Seop;Chang, Won Seok;Kim, Gill Jung;Ha, Seong Yong
    • Membrane Journal
    • /
    • v.32 no.2
    • /
    • pp.140-149
    • /
    • 2022
  • In this study, the conditions of low temperature and high pressure of biogas upgrading process using polysulfone membrane have been designed and tested to achieve the high recovery and efficiency corresponding to those of the highly selective polymeric materials. Polysulfone hollow fiber membrane with 4-component dope solution was spun via non-solvent induced phase separation. The hollow fiber membrane was mounted into a 1.5 inch housing. The effective area was 1.6 m2, and its performance was examined in various operation temperatures and pressures. CO2 and CH4 permeances were 412 and 12.7 GPU at 20℃, and 280 and 3.6 GPU at -20℃, respectively, while the CO2/CH4 selectivity increased from 32.4 to 77.8. Single gas test was followed by the mixed gas experiments using single-stage and double stage where the membrane area ratio varied from 1:1 to 1:3. At the single-stage, CH4 purity increased and the recovery decreased as the stage-cut increased. At the double stage, the area ratio of 1:3 showed the higher CH4 recovery as decreasing the operation temperature at the same purity of CH4 97%. Finally, polysulfone hollow fiber membranes have yielded of both CH4 purity and recovery of 97% at -20℃ and 16 barg.

Design and Filtration Performance of Polysulfone Hollow Fiber Membrane Hemofilter (폴리설폰 중공사막 혈액여과기의 설계 및 여과성능)

  • 김재진;박진용
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.227-234
    • /
    • 1993
  • Hemofilter was optimally designed and manufactured using polysulfone hollow fiber mem- brane with surface area of 0.6mE Molecular weight cut-off of the hemofilter was measured with polyethylene glycol and dextran aqueous solutions of various molecular weights and it was ranged from 9,500 to 38,900. Ultrafiltration rates were measured with pure water in a static system and flowing system. The clearance of urea, creatinlne, and vitamine BIB were measured using aqueous solutions.

  • PDF

Study on the Separation of CO2 from Flue Gas Using Polysulfone Hollow Fiber Membrane (폴리설폰 중공사막을 이용한 연소 배기가스 중 이산화탄소 분리에 관한 연구)

  • Kim, Seongcheon;Chun, Jeonghyeon;Chun, Youngnam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.2
    • /
    • pp.147-152
    • /
    • 2014
  • In this research, polysulfone hollow fiber membrane was used to recover $CO_2$ which is one of greenhouse gases from flue gas stream being emitted after the combustion of fossil fuels. The prerequisite requirement is to design the membrane process producing high-purity $CO_2$ from flue gas. For separation of $CO_2$, a membrane module and flue gas containing 10% carbon dioxide was used. The effects of operating conditions such as pressure, temperature, feed gas composition and multi-stage membrane on separation performance were examined at various stage cuts. Higher operating pressure and temperature increased carbon dioxide concentration and recovery ratio in permeate. Recovery ratio and separation efficiency increased if a higher content of $CO_2$ injection gas composition. Three-stage membrane system was producing a 95% $CO_2$ with 90% recovery from flue gas. The separation efficiency of three-stage membrane system was higher than one-stage system.

Evaluation of Chemical Resistance and Cleaning Efficiency Characteristics of Multi bore PSf Hollow Fiber Membrane (Multi-bore PSf 중공사막의 내화학성 및 세척 효율 특성평가)

  • Im, Kwang Seop;Kim, Tae Han;Jang, Jae Young;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.30 no.2
    • /
    • pp.138-148
    • /
    • 2020
  • The purpose of this study was to identify the cleaning efficiency of fouled multi-bore hollow fiber membranes after purification of contaminated water. The PSf (polysulfone) based hollow fiber membrane manufactured by Pure & B Tech Co., Ltd. Was used in this study. The antifouling characteristics during the water treatment were studied using bovine serum albumin (BSA) as a model compound and the chemical resistance was evaluated after long-term impregnation in sodium hypochlorite (NaOCl) solution and Citric acid to understand the long term stability of the membranes. Water permeability and mechanical strength of the membranes after prolonged chemical exposure was measured to observe the change in mechanical stability and long term performance of the membrane. moreover, the recovery efficiency was also evaluated after chemical enhanced backwashing of a membrane contaminated with bovine serum albumin. The PSf hollow fiber membrane exhibited excellent chemical resistance, and it was confirmed that the efficiency of sodium hypochlorite was high as a result of chemical enhanced backwashing.

Fabrication of Polysulfone Hollow Fiber Membranes for N2/NF3 Separation (N2/NF3 분리용 폴리썰폰 중공사막 제조 연구)

  • Lim, Min Su;Kim, Seong-Joong;Kang, Ha Sung;Park, Ho Bum;Nam, Seung Eun;Park, Ho Sik;Lee, Pyung Soo;Park, You In
    • Membrane Journal
    • /
    • v.26 no.1
    • /
    • pp.76-85
    • /
    • 2016
  • Fabrication of polysulfone (PSf) hollow fiber membranes was investigated for the separation of $N_2/NF_3$ gas mixtures, which are emitted from the display and the semiconductor industries. A combination of the non-solvent induced phase separation (NIPS) and the vapor-induced phase separation (VIPS) technique was applied to develop high flux hollow fiber membranes. Thin polymer layers were further coated onto the surface of the hollow fiber membranes by using polydimethylsiloxiane (PDMS) or Teflon AF1600(R), which contributes to improve the $N_2/NF_3$ selectivity. The $N_2/NF_3$ separation performances of our PSf hollow fiber membranes were determined by the intrinsic properties of coating materials. Especially, the PSf hollow fiber membrane coated with Teflon AF 1600(R) exhibited a higher $N_2/NF_3$ selectivity (> 14) with a slightly lower $N_2$ permeance (4.5 GPU), as compared to the commercial PSf counterparts. This feature provides a good potential as a membrane structure to separate $N_2/NF_3$.

Water Permeation Flux of Oil-Emulsion through Surface-Modified Polysulfone Membrane (표면개질된 폴리설폰 막에 대한 오일에멀젼의 수투와 플럭스)

  • Song, Kun-Hoo;Kim, Kang-Hee;Cho, Seong-Heon;Lee, Kwang-Rae
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.187-191
    • /
    • 2003
  • A hollow-fiber type polysulfone UF membrane was surface-coated with hydroxyethylmethacrylate (HEMA). The effect of various coating parameters on permeation flux, such as concentration ratio of AIBN/HEMA, solvent(water or methanol), and UV irradiation time, was investigated. The water permeation flux of oil-emulsion increased with concentration ratio of AIBN/HEMA, and increased with UV irradiation time. The flux of the membrane coated in solution using methanol as a solvent was greater than that of the membrane coated in solution using water as a solvent. The flux of both the coated and the uncoated membrane declined with the operation. The flux decline means that the membrane fouling by oil-emulsion occurs. However, the fouling of the coated membrane was much less than that of the uncoated membrane.

  • PDF

Ultrafiltration Characteristics of Poly(vinyl Alcohol) Solution and Theoretical Investigations (Poly(vinyl Alcohol) 용액의 한외여과 특성과 이론적 고찰)

  • 이상화;이영철
    • Membrane Journal
    • /
    • v.6 no.4
    • /
    • pp.203-212
    • /
    • 1996
  • The operating parameters influencing on limiting flux was investigated in the ultrafiltration of PVA, and a new model, which is based on the Amiar model using the concept of heat transfer coefficient, was devised to overcome the limitation of gel-layer model. Using polysulfone plate-unit membrane (MWCO=20,000) and hollow-fiber membrane (MWCO= 30,000), ultrafiltration characteristics of PVA was examined with the variation of operating parameters such as cross flow velocity, transmembrane pressure, temperature, and PVA concentration. According to experimental results, the ultrafiltration of PVA through polysulfone membrane is mainly controlled by well-known phenomena of concentration polarization caused by gel-layer formation. On the contrary, in hollow fiber membrane was observed upward limiting flux which can not be explained by gel-layer model. New model was applied to predict the upward limiting flux behavior with partial satisfaction. The application of new model including viscosity correction factor, however, revealed that PVA ultrafiltration is closely related to the viscosity of permeating fluid.

  • PDF