• Title/Summary/Keyword: polystyrene particle

Search Result 134, Processing Time 0.022 seconds

Suspension Polymerization with Hydrophobic Silica as a Stabilizer II. Preparation of Polystyrene Composite Particles Containing Carbon Black (소수성 실리카를 안정제로 하는 현탁중합 II. 카본블랙을 함유하는 폴리스티렌 복합체 입자의 합성)

  • Park, Moon-Soo
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.505-511
    • /
    • 2006
  • We tried to prepare polystyrene composite particles containing carbon black by suspension polymerization with water as a reaction medium. Hydrophobic silica was selected as a stabilizer and oil-soluble azobisisobutyronitrile (AIBN), as an initiator. All polymerization reactions were carried out at a fixed temperature of $75^{\circ}C$. Stabilizer concentration was varied from $0.17{\sim}3.33wt%$ compared to water, where particles with $7.96{\mu}m$ in average diameter were obtained at 1.57 wt% of stabilizer. Increase in divinylbenzene concentration, as a crosslinking agent, from $0.1{\sim}1.0 wt%$ compared to monomer exhibited a large increase in average particle diameter Incorporation of 1wt% of carbon black compared to monomer produced an increase in average diameter It is speculated that viscosity lower than that necessary to induce even dispersion of carbon black particles led to poor dispersion, and as a result, large particles. For a styrene mixture containing 3 wt% carton black compared to monomer, enhanced dispersion due to an increase in carbon black concentration reduced average particle diameters. For styrene mixtures containing 1 and 3 wt% carbon black compared to monomer, preparticles before polymerization and polymer composite particles after polymerization showed a similar tendency towards particle formation. When carbon black concentration compared to monomer was increased to 5 and 7 wt%, styrene mixtures exhibited a large increase in viscosity and thus better dispersion of carbon black particles, which led to a decrease in preparticle diameters. However, these particles experienced agglomeration in the polymerization process, and polystyrene composite particles increased in average diameter.

Effect of Latex Particle Size on Rheological and Electrical Properties of Polystyrene/Multi-Walled Carbon Nanotube Nanocomposites (라텍스 입자 크기가 폴리스티렌/탄소나노튜브 나노복합재료의 유변물성 및 전기적 물성에 미치는 영향)

  • Kang, Myung-Hwan;Noh, Won-Jin;Lee, Seong-Jae
    • Polymer(Korea)
    • /
    • v.35 no.5
    • /
    • pp.451-457
    • /
    • 2011
  • The effect of latex particle size on rheological and electrical properties of latex-blended polystyrene (PS)/multi-walled carbon nanotube (MWCNT) nanocomposites was investigated. Mono-dispersed PS particles synthesized either by emulsifier-free emulsion polymerization or by dispersion polymerization were mixed with MWCNTs under ultrasonication, and freeze-dried to prepare the nanocomposites. As the MWCNT content increased, storage modulus, complex viscosity and electrical conductivity were substantially increased. The increase of storage modulus and complex viscosity was higher for larger PS particles. The effect of particle size on electrical properties was different depending on MWCNT content. With lower MWCNT content, the nanocomposite prepared by smaller PS particles showed higher electrical conductivity, but the opposite result was given as the content increased.

Ab Initio Dispersion Polymerization of Styrene in the Presence of the Poly(methacrylic acid) Macro-RAFT Agent

  • Wi, Yeon-Hwa;Lee, Kang-Seok;Lee, Byung-Hyung;Choe, Soon-Ja
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.750-756
    • /
    • 2009
  • Stable, spherical, polystyrene particles were synthesized in ab initio dispersion polymerization by using the poly(methacrylic acid)[PMAA] macro-RAFT agent. The presence of the PMAA macro-RAFT agent on the polystyrene (PS) particles was confirmed by NMR and FTIR spectroscopy. The PS particle size was influenced by the concentration of the RAFT agent and monomer due to the initial nucleation. When the concentration of the PMAA macro-RAFT agent was increased from 2 to 10 wt% relative to the monomer, the average particle size decreased from 2.31 to 1.36 ${\mu}m$, the conversion decreased from 93.3 to 88.9%, the weight-average molecular weight increased from 46,300 to 150,200 g $mol^{-1}$ and the PDI decreased from 2.79 to 1.94, respectively. In particular, the incorporation of 10 wt% of PMAA macro-RAFT agent produced monodisperse PS spheres of 1.36 ${\mu}m$ with a coefficient of variation (CV) of 6.44%. Thus, the PMAA macro-RAFT agent worked as a reactive steric stabilizer providing monodisperse, micron-sized, PS particles.

Surface Modification of Fine Particle by Plasma Grafting in a Circulating Fluidized Bed Reactor under Reduced Pressure (감압 상태 순환유동층 반응기에서 플라즈마 그래프팅에 의한 미세입자 표면 개질)

  • Park, Sounghee
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.614-619
    • /
    • 2015
  • A plasma surface modification of powders has been carried out in a circulating fluidized bed reactor under reduced pressure. Polystyrene (PS) particles treated by plasma are grafted with polyethylene glycol (PEG) on the surface. The virgin, plasma-treated and grafted powders were characterized by DPPH method, FTIR, SEM and contact angle meter. The plasma-treated PS powders have well formed peroxide on the surface, By PEG grafting polymerization, PEG is well grafted and dispersed on the surface of the plasma-treated PS powders. The PEG-g-PS particle was successfully synthesized using the plasma circulating fluidized bed reactor under reduced pressure.

Effect of Nanotube Length on Rheological Characteristics of Polystyrene/Multi-walled Carbon Nanotube Nanocomposites Prepared by Latex Technology (라텍스 기법으로 제조한 폴리스티렌/다중벽 탄소나노튜브 나노복합재료의 나노튜브 길이가 유변학적 특성에 미치는 영향)

  • Woo, Dong-Kyun;Noh, Won-Jin;Lee, Seong-Jae
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.534-539
    • /
    • 2010
  • Polystyrene (PS)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared via latex technology and the effect of nanotube length on rheological properties were investigated. Monodisperse PS particle was synthesized by the emulsifier-free emulsion polymerization and two types of MWCNTs were used after surface modification to improve dispersion state and to remove impurities. Final nanocomposites were prepared by the freeze-drying process after dispersing the PS particles and the surface-modified MWCNTs in a ultrasonic bath. The effects of MWCNT content and nanotube length on rheological properties were evaluated by imposing the small-amplitude oscillatory shear flow. The PS/MWCNT nanocomposites showed that rheological properties were enhanced as the amount and length of MWCNT increased. It is speculated that the rheological characteristics of nanocomposites change from liquid-like to solid-like as the MWCNT amount increases, and the critical concentration to achieve network structure decreases as the nanotube length increases.

Control of Particle Alignment in an Aqueous Colloidal System by an AC Electric Field (수계 콜로이드 계에서 교류 전계에 의한 입자 배열 제어)

  • Hwang, Yeon
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.13-17
    • /
    • 2013
  • The alignments of polystyrene particles of $1{\mu}m$ and $5{\mu}m$ sizes in an aqueous colloidal system were observed by varying the electric field strength, the frequency and the water flow. Spherical mono-dispersed polystyrene particles dispersed in pure water were put into a perfusion chamber; an AC electric field was applied to the Au/Cr electrodes with a 4 mm gap on the glass substrate. The mixture of the $1{\mu}m$ and $5{\mu}m$ sized polystyrene particles at 0.5 vol% concentrations for each size was set in the dielectrophoresis conditions of 1 kHz and 150 V/cm. Large particles of $5{\mu}m$ size were aligned to form chains as the result of the dielectrophoresis force interaction. On the contrary, small particles of $1{\mu}m$ size did not form chains because the dielectrophoresis force was not sufficiently large. When the electric field increased to 250 V/cm, small particles were able to form chains. After the chains were formed from both large and small particles, they began to coalescence as time passed. Owing to the electroosmotic flow of water, wave patterns along the perpendicular direction of the applied electric field appeared at the conditions of 200 Hz and 50 V/cm, when the dielectrophoresis force was small. This wave pattern also appeared for small particles at 1 kHz and 150 V/cm conditions due to the flow of solvent when water was forced to circulate.

Preparation of Monodispersed Crosslinked Polymer Beads (단분산상으로 가교된 고분자 비드의 합성)

  • 심상은;변재만;전종원;차윤종;최순자
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.287-298
    • /
    • 2000
  • In preparing micron-sized monodisperse polystyrene beads by dispersion polymerization, the conversion, and the particle size and its distribution were affected by the reaction temperature, concentration of the monomer, solvent and initiator, molecular weight and concentration of the steric stabilizer, amount of oxygen existing in the reactor, and an appropriate combination of these starting materials. Ethanol as a dispersing agent, styrene as a monomer, PVP as a steric stabilizer, AIBN as an initiator, DVB as a cross-linking agent and toluene as a co-solvent were the basic materials for the synthesis. The reaction rate and the conversion were increased with the reaction temperature and the amount of DVB from 1 to 4%, and the conversion was saturated after 10 hours of the reaction time. The optimum reaction recipe for the preparation of the monodisperse PS beads was 25% styrene monomer, 0.5% DVB, 25% toluene, 10-15% PVP, and 2 and 4% AIBN, thereby, 3.9~4 ${\mu}{\textrm}{m}$ and 3.4~9.3 ${\mu}{\textrm}{m}$ of polystyrene beads, respectively, were successfully synthesized.

  • PDF

Measurement of Particle Deposition Velocity Toward a Vertical Wafer Surface (수직 웨이퍼상의 입자 침착속도의 측정)

  • Bae, G.N.;Lee, C.S.;Park, S.O.;Ahn, K.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.521-527
    • /
    • 1995
  • The average particle deposition velocity toward a vertical wafer surface in a vertical airflow chamber was measured by a wafer surface scanner(PMS Model SAS-3600). Polystyrene latex(PSL) spheres with diameters between 0.3 and $0.8{\mu}m$ were used. To examine the effect of the airflow velocity on the deposition velocity, experiments were conducted for three vertical airflow velocities ; 20, 30, 50cm/s. Experimental data of particle deposition velocity were compared with those given by prediction model suggested by Liu and Ahn(1987).

  • PDF

Computational Fluid Dynamics Study on Particle Rejection in Microfiltration

  • Nakao, Shin-ichi;Goto, Tomomasa;Tanaka, Nobuyuki;Yamamoto, Atsushi;Takaba, Hiromitsu
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.15-18
    • /
    • 2004
  • Computational fluid dynamics (CFD) was applied to modeling particle dynamics in microfiltration (MF). The rejection properties of poly methylmethacrylate (PMMA) and polystyrene (PS) were calculated. Calculated rejection (R) of PMMA was independent with the porosity of the membrane, and the R was constant in the range of volume flux between $1\times 1-^{-4}-1\times 10^{-2}$ m/s. These observations were in quantity agreement with our experimental observations. The dependence of PMMA and PS rejection on the ratio of particle diameter and pore diameter were good agreement with the experimental values, which suggesting that the validity of CFD simulation to evaluate rejection of particle in MF membranes. Change of rejection of PMMA as a function of time was molded based on the CFD result which explained well the experimental observation.

  • PDF