• Title/Summary/Keyword: polynomial regression analysis

Search Result 172, Processing Time 0.043 seconds

NDVI Noise Interpolation Using Harmonic Analysis (조화 분석을 이용한 식생지수 보정 기법에 관한 연구)

  • Park, Soo-Jae;Han, Kyung-Soo;Pi, Kyoung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.4
    • /
    • pp.403-410
    • /
    • 2010
  • NDVI(Normalized Difference Vegetation Index), which is broadly used as short-term data composite, is an important parameter for climate change and long-term land surface monitoring. Although atmospheric correction is performed, NDVI dramatically appears several low peak noise in the long-term time series. They are related to various contaminated sources, such as cloud masking problem and wet ground condition. This study suggests a simple method through harmonic analysis for reducing NDVI noise using SPOT/VGT NDVI 10-day MVC data. The harmonic analysis method is compared with the polynomial regression method suggested previously. The polynomial regression method overestimates the NDVI values in the time series. The proposed method showed an improvement in NDVI correction of low peak and overestimation.

QUASI-LIKELIHOOD REGRESSION FOR VARYING COEFFICIENT MODELS WITH LONGITUDINAL DATA

  • Kim, Choong-Rak;Jeong, Mee-Seon;Kim, Woo-Chul;Park, Byeong-U.
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.4
    • /
    • pp.367-379
    • /
    • 2004
  • This article deals with the nonparametric analysis of longitudinal data when there exist possible correlations among repeated measurements for a given subject. We consider a quasi-likelihood regression model where a transformation of the regression function through a link function is linear in time-varying coefficients. We investigate the local polynomial approach to estimate the time-varying coefficients, and derive the asymptotic distribution of the estimators in this quasi-likelihood context. A real data set is analyzed as an illustrative example.

A Study on tool life in the high speed machining of small-size end mill by factorial design of experiments and regression model (요인 실험계획법 및 회귀분석을 이용한 소경 엔드밀의 공구수명에 대한 연구)

  • Lim P.;Park S.Y.;Yang G.E.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.993-996
    • /
    • 2005
  • High speed machining(HSM) technique is widely used in the appliance, automobile part and mold industries, which has many advantages such as good quality, low cost and rapid machining time. but it also has problems like tool break, smooth tool path, and so on. In particular, small size end mill is easy to break, so it must be changed before interrupting operation. Generally, the tool life of small size end mill is effected by the milling conditions whose evaluated parameters are spindle, feedrate, and width of cut. The experiments are carried out by full factorial design of experiments using and orthogonal array. This paper shows optimal combination and mathematical model for tool life, and the analysis of variance(ANOVA) is employed to analyze the main effects and the interactions of these milling parameters and the second-order polynomial regression model with three independent variables is estimated to predict tool life by multiple regression analysis.

  • PDF

A Study on tool life in the high speed machining of small-size end mill by factorial design of experiments and regression model (요인 실험계획법 회귀분석을 이용한 소경 엔드밀의 공구수명에 대한 연구)

  • Lim, Pyo;Park, Sang-Yoon;Yang, Gyun-Eui
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.73-80
    • /
    • 2006
  • High speed machining(HSM) technique is widely used in the appliance, automobile part and mold industries, because it has many advantages such as good quality, low cost and rapid machining time. But it also has problems such as tool breakage, smooth tool path, and so on. In particular, small size end mill is easy to break, so it must be changed before interrupting operation. Generally, the tool life of small size end mill is affected by the milling conditions whose selected parameters are spindle speed, feedrate, and width of cut. The experiments were carried out by full factorial design of experiments using an orthogonal array. This paper shows optimal combination and mathematical model for tool life, Therefore, the analysis of variance(ANOVA) is employed to analyze the main effects and the interactions of these milling parameters and the second-order polynomial regression model with three independent variables is estimated to predict tool life by multiple regression analysis.

Study on Internal Void Closure in Slab ingot during Hot Plate Forging (열간 판재단조시 강괴 내부의 기공폐쇄에 관한 연구)

  • 조종래;김동권;김영득;이부윤
    • Transactions of Materials Processing
    • /
    • v.5 no.1
    • /
    • pp.18-26
    • /
    • 1996
  • In order to investigate the effect of pre-cooling of ingot on void closure in hot plate forging the internal strain and stress distributions are examined quantitatively by using ABAQUS. Simula-tions are carried out on a large slab ingot having the same temperature and the temperature gradient induced by air-cooling. It is shown that pre-cooling produces little effect on the strain behavior but remarkable effect on the hydrostatic stress at the central zone of ingot. The main factors for crushing micro-voids are the effective strain and the time integral of hydrostatic stress in the region surrounding the voids. Based on regression analysis it was found that the distortion of void can be expressed as a polynomial function of the two factors.

  • PDF

Temporal distritution analysis of design rainfall by significance test of regression coefficients (회귀계수의 유의성 검정방법에 따른 설계강우량 시간분포 분석)

  • Park, Jin Heea;Lee, Jae Joon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.4
    • /
    • pp.257-266
    • /
    • 2022
  • Inundation damage is increasing every year due to localized heavy rain and an increase of rainfall exceeding the design frequency. Accordingly, the importance of hydraulic structures for flood control and defense is also increasing. The hydraulic structures are designed according to its purpose and performance, and the amount of flood is an important calculation factor. However, in Korea, design rainfall is used as input data for hydrological analysis for the design of hydraulic structures due to the lack of sufficient data and the lack of reliability of observation data. Accurate probability rainfall and its temporal distribution are important factors to estimate the design rainfall. In practice, the regression equation of temporal distribution for the design rainfall is calculated using the cumulative rainfall percentage of Huff's quartile method. In addition, the 6th order polynomial regression equation which shows high overall accuracy, is uniformly used. In this study, the optimized regression equation of temporal distribution is derived using the variable selection method according to the principle of parsimony in statistical modeling. The derived regression equation of temporal distribution is verified through the significance test. As a result of this study, it is most appropriate to derive the regression equation of temporal distribution using the stepwise selection method, which has the advantages of both forward selection and backward elimination.

Design Optimization for 3D Woven Materials Based on Regression Analysis (회귀 분석에 기반한 3차원 엮임 재료의 최적설계)

  • Byungmo, Kim;Kichan, Sim;Seung-Hyun, Ha
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.6
    • /
    • pp.351-356
    • /
    • 2022
  • In this paper, we present the regression analysis and design optimization for improving the permeability of 3D woven materials based on numerical analysis data. First, the parametric analysis model is generated with variables that define the gap sizes between each directional wire of the woven material. Then, material properties such as bulk modulus, thermal conductivity coefficient, and permeability are calculated using numerical analysis, and these material data are used in the polynomial-based regression analysis. The Pareto optimal solution is obtained between bulk modulus and permeability by using multi-objective optimization and shows their trade-off relation. In addition, gradient-based design optimization is applied to maximize the fluid permeability for 3D woven materials, and the optimal designs are obtained according to the various minimum bulk modulus constraints. Finally, the optimal solutions from regression equations are verified to demonstrate the accuracy of the proposed method.

Orthotropic Theory for the Prediction of Mechanical Performance in Thermally Point-bonded Nonwovens

  • Kim, Han-Seong
    • Fibers and Polymers
    • /
    • v.5 no.2
    • /
    • pp.139-144
    • /
    • 2004
  • The orthotropic theory is applied for the nonwoven fabrics that have a preferred orientation direction, the case if the structure is not isotropic. The polynomial regression analysis is employed to allow the attainment of more statistically meaningful information. A functional form based on the transformation rule is developed for the orthotropic approach. The predictions thus obtained are seen to be in excellent agreements with experimental data and the resulting compliances exhibit meaningful relationships for the processing conditions. The compatibility of the compliances from tensile and shear analyses has been explored prior to a practical application of the four compliances defining the in-plane strain-stress field.

A Study on the Classification of the Korean Consonants in the VCV Speech Chain (VCV 연쇄음성상에 존재하는 한국어 자음의 분류에 관한 연구)

  • 최윤석;김기석;김원준;황희영
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.6
    • /
    • pp.607-615
    • /
    • 1990
  • In this paper, I propose the experimental models to classify the consonants in the Vowel-Consonant-Vowel (VCV) speech chain into four phonemic groups such as nasals, liquids, plosives and the others. To classify the fuzzy patterns like speech, it is necessary to analyze the distribution of acoustic feature of many training data. The classification rules are maximum 4 th order polynomial functions obtained by regression analysis, contributing collectively the result. The final result shows about 87% success rates with the data spoken by one man.

An Analysis of Distributed Lag Effects of Expenditure by Type of R&D on Scientific Production: Focusing on the National Research Development Program (연구개발단계별 연구개발투자와 논문 성과 간의 시차효과 분석: 국가연구개발사업을 중심으로)

  • Pak, Cheol-Min;Ku, Bon-Chul
    • Journal of Korea Technology Innovation Society
    • /
    • v.19 no.4
    • /
    • pp.687-710
    • /
    • 2016
  • This study aims to empirically estimate distributed lag effects of expenditure by type of R&D on scientific publication in the national R&D program. To analyze the lag structure between them, we used a dataset comprised of panel data from 104 technologies categorized by 6T (IT, BT, NT, ST, ET, CT) from 2007 to 2014, and employed multiple regression analysis based on the polynomial distributed lag model. This is because it is highly likely to emerge multicollinearity, if a distributed lag model without special restrictions is applied to multiple regression analysis. The main results are as follows. In the case of basic research, its lag effects are relatively evenly distributed during four years. On the other hand, the applied research and experimental development have distributed lag effects for three years and two years respectively. Therefore, when it comes to analyzing performance of scientific publication, it is necessary to be performed with characteristics of the time lag by type of R&D.