• Title/Summary/Keyword: polynomial growth

Search Result 105, Processing Time 0.022 seconds

Predictive mathematical model for the growth kinetics of Listeria monocytogenes on smoked salmon (온도와 시간을 주요 변수로한 훈제연어에서의 Listeria monocytogenes 성장예측모델)

  • Cho, Joon-Il;Lee, Soon-Ho;Lim, Ji-Su;Kwak, Hyo-Sun;Hwang, In-Gyun
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.2
    • /
    • pp.120-124
    • /
    • 2011
  • Predictive mathematical models were developed for predicting the kinetics of growth of Listeria monocytogenes in smoked salmon, which is the popular ready-to-eat foods in the world, as a function of temperature (4, 10, 20 and $30^{\circ}C$). At these storage temperature, the primary growth curve fit well ($r^2$=0.989~0.996) to a Gompertz equation to obtain specific growth rate (SGR) and lag time (LT). The Polynomial model for natural logarithm transformation of the SGR and LT as a function of temperature was obtained by nonlinear regression (Prism, version 4.0, GraphPad Software). Results indicate L. monocytogenes growth was affected by temperature mainly, and SGR model equation is $365.3-31.94^*Temperature+0.6661^*Temperature^{\wedge^2}$ and LT model equation is $0.1162-0.01674^*Temperature+0.0009303^*Temperature{\wedge^2}$. As storage temperature decreased $30^{\circ}C$ to $4^{\circ}C$, SGR decreased and LT increased respectively. Polynomial model was identified as appropriate secondary model for SGR and LT on the basis of most statistical indices such as bias factor (1.01 by SGR, 1.55 by LT) and accuracy factor (1.03 by SGR, 1.58 by LT).

Statistical Estimated Model of Chronological Change in Physical Growth and Development in Korean Youth(17 Years Old) - From 1983 To 1993 - (한국 청소년(만 17세) 체격의 시대적 변천에 대한 통계적 모형 추정 -1983년부터 1993년까지-)

  • 성웅현;윤석옥;윤태영;최중명;박순영
    • Korean Journal of Health Education and Promotion
    • /
    • v.12 no.2
    • /
    • pp.36-47
    • /
    • 1995
  • This research was obtained from analyzing how the physiques of the 3rd grade students of high school for males and females and developed for the last eleven years(from 1983 to 1993). By the physiques and nutritional index of physical growth and development, Relative Body Weight of 36.62 exceeded the standard, on the other hand females showed lower records than the standard. Relative Chest Girth Index belonged to the normal type of males and females in all, in the comparison of the records between 1983 and 1993, males increased in average 0.29 and females in average 0.55. Relative Chest Girth Index of females was greater than that of females. By the results of Relative Sitting Height Index, growth of the lower body for males and females was greater than that of males. In case of Vervaeck Index, males increased in average 2.04 but females increased in average 1, 20 relatively less than males. These phenomena provided for the evidence of the deficient nutrition in females. In the regression models of body height and body weight within a certain period, statistical regression model types which best indicated chronological average changes of body height and body weight, took 3rd Order Polynomial Regression Model rather than linear regression model. In females, statistical regression model types which best is suitable for chronological average change of body height and body weight, took 4th and 2nd Order Polynomial Regression Model respectively. The prediction value of 1995 by estimated polynomial regression model anticipated that body height of 3rd grade year students of high school of males in 1993 went on increasing from 170.87cm to 171.79cm in average 0.92cm growth and that of females from 158.99cm to 160.79cm in average 1.80cm growth. In addition, body weight of males seemed to increase from 62.58kg to 64.52kg in average 1.94kg growth and that of females seemed to increase from 54.05kg to 54.19kg in average 0.14kg growth. Linear Regression Model was suitable for the regression model of body weight for body height. Prediction on increase of an average body weight for body height was that, according to growth of body height 1cm in males, body weight increased 1.41kg averagely and that of females 0.86kg. For that reason, we came to conclusion that body weight increase for body height 1cm in males was greater than that in females on average.

  • PDF

Effects of Temperature and Light Intensity on the Growth of Red Pepper(Capsicum annuum L.) in Plastic House During Winter. IV. Growth Responses Influenced by Temperatures and Light Intensities in Growth Chamber (동계 plastic house내 고추(Capsicum annuum L.) 육묘시 온도와 광도가 생장에 미치는 영향 IV. 생장상내 온도 및 광환경 변화에 따른 생장반응)

  • 정순주;이범선;권용웅
    • Journal of Bio-Environment Control
    • /
    • v.4 no.2
    • /
    • pp.125-130
    • /
    • 1995
  • Observations on the seedling growth of red pepper responding to different temperature(10, 20, 3$0^{\circ}C$) and light intensity(5, 15, 25 klux) were made in the growth Chamber during 7 weeks. The results obtained were as follows; 1. Best results of the combinations of temperature and light intensity were obtained from the combinated treatment of 3$0^{\circ}C$ and 25klux. At all of the temperature levels in this experiment, the more the light intensity is high, the more the growth is favor, but at low temperature below 2$0^{\circ}C$ and low light intensity below 15 klux, the growth of red pepper seedlings was decreased markedly. 2. Multiple regression polynomial equations of the characteristics of red pepper seedlings grown in the different combinations of temperature and light intensity fitted well in the plant height, number of leaves, leaf area, stem dry weight and shoot dry weight. 3. Multiple regression polynomial equation to the shoot dry weight was partial differentiated and diagrammatized the response surface using its theoretical value. Light intensity affected more to the shoot dry weight in the temperature below 2$0^{\circ}C$ but above 2$0^{\circ}C$ the role of the temperature showed greatly influence however, interaction effects of light intensity and temperature showed strongly.

  • PDF

COMPARATIVE GROWTH ANALYSIS OF DIFFERENTIAL MONOMIALS AND DIFFERENTIAL POLYNOMIALS DEPENDING ON THEIR RELATIVE pL* - ORDERS

  • Biswas, Tanmay
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.103-130
    • /
    • 2018
  • In the paper we establish some new results depending on the comparative growth properties of composite entire and meromorphic functions using relative $_pL^*-order$, relative $_pL^*-lower$ order and differential monomials, differential polynomials generated by one of the factors.

ON THE GROWTH OF POLYNOMIALS

  • Rubia Akhter;B. A. Zargar;M. H. Gulzar
    • Korean Journal of Mathematics
    • /
    • v.31 no.2
    • /
    • pp.153-160
    • /
    • 2023
  • In this paper, we study the growth of polynomials P(z) of degree n defined by $P(z)=z^s(a_0+\sum\limits_{j=t}^{n-s}a_jz^j)$, t ≥ 1, 0 ≤ s ≤ n-1 which do not vanish in the disk |z| ≤ k, k ≥ 1 except for the s-fold zeros at origin. Our result generalises and refines many results known in the literature.

Estimation of Covariance Functions for Growth of Angora Goats

  • Liu, Wenzhong;Zhang, Yuan;Zhou, Zhongxiao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.7
    • /
    • pp.931-936
    • /
    • 2009
  • Body weights of 862 Angora goats between birth and 36 months of age, recorded on a semiyearly basis from 1988 to 2000, were used to estimate genetic, permanent environmental and phenotypic covariance functions. These functions were estimated by fitting a random regression model with 6th order polynomial for direct additive genetic and animal permanent environmental effects and 4th and 5th order polynomial for maternal genetic and permanent environmental effects, respectively. A phenotypic covariance function was estimated by modelling overall animal and maternal effects. The results showed that the most variable coefficient was the intercept for both direct and maternal additive genetic effects. The direct additive genetic (co)variances increased with age and reached a maximum at about 30 months, whereas the maternal additive genetic (co)variances increased rapidly from birth and reached a maximum at weaning, and then decreased with age. Animal permanent environmental (co)variances increased with age from birth to 30 months with lower rate before 12 months and higher rate between 12 and 30 months. Maternal permanent environmental (co)variances changed little before 6 months but then increased slowly and reached a maximum at about 30 months. These results suggested that the contribution of maternal additive genetic and permanent environmental effects to growth variation differed from those of direct additive genetic and animal permanent environmental effects not only in expression time, but also in action magnitude. The phenotypic (co)variance estimates increased with age from birth to 36 months of age.

The Choice of an Optimal Growth Function Considering Environmental Factors and Production Style (생산방식과 환경요인들을 고려한 최적성장함수의 선택에 관한 연구)

  • Choi, Jong Du
    • Environmental and Resource Economics Review
    • /
    • v.13 no.4
    • /
    • pp.717-734
    • /
    • 2004
  • This paper examined the statistical goodness-of-fit tests for biological growth model in bioeconomic analysis. Some authors estimated usually growth function for fish in the world. However, few studies have estimated growth equations for the bivalve species. Thus, this paper studied the common functional forms of fitting growth equations for cham scallops considering environmental factors and production styles. The following functional forms are considered: linear, log-reciprocal, double log, polynomial and linear with interactions. Results of fitting these various functional forms with real data are compared and evaluated using standard statistical goodness-of-fit tests. Results also indicate that log-reciprocal function is statistically the best fit to the real data. Therefore, the log-reciprocal function is decided the best function describing cham scallop biological growth and hence might be useful for economic evaluation(i.e., optimal harvesting time).

  • PDF

The Development of Predictive Growth Models for Total Viable Cells and Escherichia coli on Chicken Breast as a Function of Temperature

  • Heo, Chan;Kim, Ji-Hyun;Kim, Hyoun-Wook;Lee, Joo-Yeon;Hong, Wan-Soo;Kim, Cheon-Jei;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.30 no.1
    • /
    • pp.49-54
    • /
    • 2010
  • The aim of this research was to estimate the effect of temperature and develop predictive models for the growth of total viable cells (TVC) and Escherichia coli (EC) on chicken breast under aerobic and various temperature conditions. The primary models were determined by Baranyi model. The secondary models for the specific growth rate (SGR) and lag time (LT), as a function of storage temperature, were developed by the polynomial model. The initial contamination level of chicken breasts was around 4.3 Log CFU/g of TVC and 1.0 Log CFU/g of E. coli. During 216 h of storage, SGR of TVC showed 0.05, 0.15, and 0.54 Log CFU/g/h at 5, 15, and $25^{\circ}C$. Also, the growth tendency of EC was similar to those of TVC. As storage temperature increased, the values of SGR of microorganisms increased dramatically and the values of LT decreased inversely. The predicted growth models with experimental data were evaluated by $B_f$, $A_f$, RMSE, and $R^2$. These values indicated that these developed models were reliable to express the growth of TVC and EC on chicken breasts. The temperature changes of distribution and showcase in markets might affect the growth of microorganisms and spoilage of chicken breast mainly.

Estimation of Shelf-life of Frankfurter Using Predictive Models of Spoilage Bacterial Growth

  • Heo, Chan;Choi, Yun-Sang;Kim, Cheon-Jei;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.29 no.3
    • /
    • pp.289-295
    • /
    • 2009
  • The aim of this research was to develop predictive models for the growth of spoilage bacteria (total viable cells, Pseudomonas spp., and lactic acid bacteria) on frankfurters and to estimate the shelf-life of frankfurters under aerobic conditions at various storage temperatures (5, 15, and $25^{\circ}C$). The primary models were determined using the Baranyi model equation. The secondary models for maximum specific growth rate and lag time as functions of temperature were developed by the polynomial model equation. During 21 d of storage under various temperature conditions, lactic acid bacteria showed the longest lag time and the slowest growth rate among spoilage bacteria. The growth patterns of total viable cells and Pseudomonas spp. were similar each other. These data suggest that Pseudomonas spp. might be the dominant spoilage bacteria on frankfurters. As storage temperature increased, the growth rate of spoilage bacteria also increased and the lag time decreased. Furthermore, the shelf-life of frankfurters decreased from 7.0 to 4.3 and 1.9 (d) under increased temperature conditions. These results indicate that the most significant factor for spoilage bacteria growth is storage temperature. The values of $B_f$, $A_f$, RMSE, and $R^2$ indicate that these models were reliable for identifying the point of microbiological hazard for spoilage bacteria in frankfurters.

Predictive Modeling for the Growth of Salmonella Enterica Serovar Typhimurium on Lettuce Washed with Combined Chlorine and Ultrasound During Storage

  • Park, Shin Young;Zhang, Cheng Yi;Ha, Sang-Do
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.4
    • /
    • pp.374-379
    • /
    • 2019
  • This study developed predictive growth models of Salmonella enterica Serovar Typhimurium on lettuce washed with chlorine (100~300 ppm) and ultrasound (US, 37 kHz, 380 W) treatment and stored at different temperatures ($10{\sim}25^{\circ}C$) using a polynomial equation. The primary model of specific growth rate (SGR) and lag time (LT) showed a good fit ($R^2{\geq}0.92$) with a Gompertz equation. A secondary model was obtained using a quadratic polynomial equation. The appropriateness of the secondary SGR and LT model was verified by coefficient of determination ($R^2=0.98{\sim}0.99$ for internal validation, 0.97~0.98 for external validation), mean square error (MSE=-0.0071~0.0057 for internal validation, -0.0118~0.0176 for external validation), bias factor ($B_f=0.9918{\sim}1.0066$ for internal validation, 0.9865~1.0205 for external validation), and accuracy factor ($A_f=0.9935{\sim}1.0082$ for internal validation, 0.9799~1.0137 for external validation). The newly developed models for S. Typhimurium could be incorporated into a tertiary modeling program to predict the growth of S. Typhimurium as a function of combined chlorine and US during the storage. These new models may also be useful to predict potential S. Typhimurium growth on lettuce, which is important for food safety purposes during the overall supply chain of lettuce from farm to table. Finally, the models may offer reliable and useful information of growth kinetics for the quantification microbial risk assessment of S. Typhimurium on washed lettuce.