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COMPARATIVE GROWTH ANALYSIS OF

DIFFERENTIAL MONOMIALS AND DIFFERENTIAL

POLYNOMIALS DEPENDING ON THEIR RELATIVE
,L*- ORDERS

TANMAY Biswas*

ABSTRACT. In the paper we establish some new results depend-
ing on the comparative growth properties of composite entire and
meromorphic functions using relative ,L*-order, relative ,L"-lower
order and differential monomials, differential polynomials generated
by one of the factors.

1. Introduction, Definitions and Notations

We denote by C the set of all finite complex numbers and f be a
meromorphic function defined on C. We use the standard notations and
definitions in the theory of entire and meromorphic functions which are
available in [6, 8, 13, 15] and [12]. Henceforth, we do not explain those in
details. For z € [0,00) and k € N, we define exp* 2 = exp (exp[k*” x)
where N be the set of all positive integers. Now we just recall the
following properties of meromorphic functions which will be needed in
the sequel.

Let ngj,n1j,...,nk;(k > 1) be non-negative integers such that for

k
each j, > n;; > 1. For a non-constant meromorphic function f, we call
i=0
M;[f] = Aj (£)™ (FO)™ L (F%N)™ swhere T (r, A;) = S (r, f) to be
k

a differential monomial generated by f. The numbers yy7; = > n4; and
i=0
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k
I'aj = > (i 4+ 1)ny; are called respectively the degree and weight of
i=0

S
M; [f] ([5], [11]). The expression P [f] = > M;[f] is called a differ-
j=1
ential polynomial generated by f. The numbers vp = Jmax Yaj and
<J<s
I'p = max @'y are called respectively the degree and weight of P [f]

1< j< s

(see [5, 11]). Also we call the numbers yp = 1r<nig ym; and k (the
_ i<s

order of the highest derivative of f ) the lower de_gree and the order of
P [f] respectively. If v, = vp, P[f] is called a homogeneous differential

polynomial. Throughout the paper, we consider only the non-constant
differential polynomials and we denote by Py [f] a differential polynomial
not containing f, i.e., for which ng; = 0 for j = 1,2, ...s. We consider
only those P [f], Py [f] singularities of whose individual terms do not
cancel each other. We also denote by M [f] a differential monomial
generated by a transcendental meromorphic function f.

However, the Nevanlinna’s Characteristic function of a meromorphic
function f is define as

Ty (r) = Ny (r) +my (1),

wherever the function Ny (r,a) <N ¢ (r, a)) known as counting function

of a-points (distinct a-points) of meromorphic f is defined as follows:

r

t,a) — 0 _
Nf(r,a)—/nf( 7a) tnf( 7a)dt+nf(0,a)10g7“

0

_ ey t —n+(0 _
Nf(r,a,)_/nf(’a) t"f( ’a)dt—i—nf((),a)logr ,
0

in addition we represent by n¢ (r,a) (7{ 7 (r, a)) the number of a-points

(distinet a-points) of f in |z| < r and an co-point is a pole of f. In many

occasions Ny (r,00) and ]\?f (r,00) are symbolized by Ny (r) and ]\_ff (r)
respectively.
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On the other hand, the function m¢ (r, 0o) alternatively indicated by
my (r) known as the proximity function of f is defined as:
1 2m
my (r) = 2/log+ ‘f <rei9) ‘ df, where
T
0

log" 2 = max (log z,0) for all x >0 .

Also we may employ m <T, ﬁ) by m¢ (r,a).
If f is entire, then the Nevanlinna’s Characteristic function T (r) of
f is defined as
Ty (r) =my (r).
Moreover for any non-constant entire function f, Ty (r) is strictly in-
creasing and continuous functions of . Also its inverse T L (1T (0)], 00)

— (0,00) is exists where lim 77! (s) = oo.
5—00 f
In this connection we immediately remind the following definition
which is relevant:

DEFINITION 1.1. Let a be a complex number, finite or infinite. The
Nevanlinna’s deficiency and the Valiron deficiency of a with respect to
a meromorphic function f are defined as

— N
5(a’f):1_ hm f(’l",(l) — mmf (T7a)
rooe Typ(r)  roeo Ty (r)
and N
Aa; f)=1— lim Ny (r.a) — Tm Y (r,a)
r—oo Tf (r) r—oo T} (r)

DEFINITION 1.2. The quantity O(a; f) of a meromorphic function f
is defined as follows
— Z\_ff (r,a)
Oa;f) =1~ lm =705
DEFINITION 1.3. [16] For a € CU {oo}, we denote by ng—;(r,a), the
number of simple zeros of f —a in |z| < 7. Ny—i(r,a) is defined in terms
of ny—1(r,a) in the usual way. We put
A 1 T f|=1(ra a)
oulaif) =1- lm =070
the deficiency of ‘a’ corresponding to the simple a-points of f, i.e., simple
zeros of f — a.
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Yang [14] proved that there exists at most a denumerable num-
ber of complex numbers a € C U {oo} for which d;(a; f) > 0 and

> accufoo} 01(a; f) < 4.

DEFINITION 1.4. [9] For a € C U {oo}, let n,(r,a; f) denotes the
number of zeros of f —a in |z| < r, where a zero of multiplicity < p is
counted according to its multiplicity and a zero of multiplicity > p is
counted exactly p times and N (r,a; f) is defined in terms of n,(r, a; f)
in the usual way. We define

oy g g Ne(ra; f)
5p(a, f) =1- rll)noloW

DEFINITION 1.5. [2] P[f] is said to be admissible if
(i) P[f] is homogeneous, or
(ii) P[f] is non homogeneous and mys(r) = S¢(r).

However in case of any two meromorphic functions f and g, the ratio
Ty (r)
Ty(r) : o .
of their Nevanlinna’s Characteristic functions. Further the concept of

the growth measuring tools such as order and lower order which are
conventional in complex analysis and the growth of entire or meromor-
phic functions can be studied in terms of their orders and lower orders
are normally defined in terms of their growth with respect to the exp
function which are shown in the following definition:

as r — oo is called as the growth of f with respect to g in terms

DEFINITION 1.6. The order py (the lower order Ay) of a meromorphic
function f is defined as

oy — T log T (r) _ im log T (r) _ m log T (r)
F= 5% log Texp» (1) r—oo log (%) r—oolog (1) + O(1)

A = lim log Ty (r) _ yy loaTy(r) _ Mo Ty(r) )
7‘—>0010g Texpz (T) r—00 log (%) r—)oolog (7‘) + O(l)

Somasundaram and Thamizharasi [10] introduced the notions of L-
order and L-lower order for entire functions where L = L () is a positive
continuous function increasing slowly, i.e., L (ar) ~ L (r) as r — oo for
every positive constant a. The more generalized concept of L-order and
L-lower order of meromorphic functions are L*-order and L*-lower order
respectively which are as follows:
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DEFINITION 1.7. [10] The L*-order pJLc* and the L*-lower order )\JLC*
of a meromorphic function f are defined by
— log Ty (r)

pJLc* = lim

« logT
and )\JI? = lim 0g Ty ()
r—)oo]og [reL(r)]

r—oolog [rel (]

Lahiri and Banerjee [7] introduced the definition of relative order of
a meromorphic function with respect to an entire function which is as
follows:

DEFINITION 1.8. [7] Let f be meromorphic and ¢ be entire. The
relative order of f with respect to g denoted by pg (f) is defined as

p(f.g) = inf{u>0:T(r) <T,(r") for all sufficiently large r}
—— log Ty 1T (r)
= lim ————=.
r—00 log r
The definition coincides with the classical one [7] if g (z) = exp z.
Similarly one can define the relative lower order of a meromorphic
function f with respect to an entire g denoted by A, (f) in the following
manner :
log T, M (r
A(f.g) = tim 2T 1)

In order to make some progress in the study of relative order, now
we introduce relative ,L*-order and relative ,L*-lower order of a mero-
morphic function f with respect to an entire g which are as follows:

DEFINITION 1.9. The relative ,L*-order denoted as pze* (f,g9) and

relative ,L*- lower order denoted as )\5* (f,g) of a meromorphic function
f with respect to an entire g are defined as

— log Tg_le (r)

L* = I
Pp (7,9) Tl>rrol<>log [rexp[p]L(r)

. logT,7'T
and AL (f.g) = lim —280s 171
] r—oolog [rexplP! L (r)]

where p is any positive integers.

In the paper we establish some new results depending on the compar-
ative growth properties of composite entire and meromorphic functions
using relative ,L*-order (resp. relative ,L*- lower order) and differential
monomials, differential polynomials generated by one of the factors.
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2. Lemmas.

In this section we present some lemmas which will be needed in the
sequel.

LEMMA 2.1. [3] Let f be a meromorphic function either of finite

order or of non-zero lower order such that © (oo; f) = > 6p(a; f) =1
aF#00
ord(oco;f) = > d(a;f) =1 and g be an entire function with regular
a#oo

growth and non zero finite order. Also let © (00;9) = > 0p(a;9) =1
aFoo
or 0 (o0;9) = Y. d(a;g) = 1. Then for homogeneous Py [f] and Py [g],

a#£oo

-1
i 10g TP() (9] TPO[f} (T‘)
r=oo log Ty ' Ty (r)

LEMMA 2.2. [4] Let f be a transcendental meromorphic function of
finite order or of non-zero lower order and Y.  d1(a; f) =4 and g be
ac€CU{oco}
a transcendental entire function with regular growth and non zero finite
order. Also let >  d1(a;g9) =4. Then
a€CU{oco}

log T]\}l[g}TM[f} (r)

i =) =1.
oo logTy Ty (r)

LEMMA 2.3. Let f be a meromorphic function either of finite order
or of non-zero lower order such that © (oo; f) = > d,(a;f) =1 or
a#oo

d(oo;f) = > 0(a;f) = 1 and g be an entire function with regular

a#oo
growth having non zero finite order and © (c0;9) = Y 0p(a;g) =1 or
aF#o00
d(00;59) = > 0 (a;g) = 1. Then for any positive integer p, the relative
aF#00

pL*-order and relative , L*-lower order of Py [f] with respect to Py [g] are
same as those of f with respect to g for homogeneous Py [f]| and Py [g].

Proof. By Lemma 2.1 we obtain that
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) log T 11 Trof1) ()
L P _ Tm Po[g 0
pp ( 0 [f] » 40 ['g]) TLIEO log [7’ exp[p 7’)]

{ log T, Ty () log Ty Thos (T)}
= lim

r—co | log [rexpl?) L(r)] log Ty ' T (r)
TN T0) L RT Ty ()
= lim - lim
TﬁWIog [rexplP) L (r)] r—eo log Ty 'Ty (r)
= pp (fa g) ’
=y (f.9).
In a similar manner, )\ (R fl,Polg]) = )\IE* (f,g). This proves the
lemma. O

In the line of Lemma 2.3 and with the help of Lemma 2.2, we may
state the following lemma without its proof :

LEMMA 2.4. Let f be a transcendental meromorphic function of finite

order or of non-zero lower order and >, d1(a;f) = 4 and g be a
acCU{oo}
transcendental entire function with regular growth and non zero finite

order. Alsolet >  41(a;g) = 4. Then for any positive integer p, the
ac€CU{oco}

relative ,L*-order and relative ,L*-lower order of M|f] with respect to

M]g] are same as those of f with respect to g. i.e.,

py (M [f],Mg]) = py (f.g) and NJ" (M [f], M [g]) = A)" (f,9) -

LEMMA 2.5. [1] Let f be meromorphic and g be entire and suppose
that 0 < u < pg < 0o. Then for a sequence of values of r tending to
infinity,

Tfog (r) = Ty (exp (r)").

3. Theorems.

In this section we present the main results of the paper. It is need-
less to mention that in the paper, the admissibility and homogeneity of
Py [f] for meromorphic f will be needed as per the requirements of the
theorems.
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THEOREM 3.1. Let f be a meromorphic function either of finite order

or of non-zero lower order such that © (oo; f) = > d,(a;f) =1 or
aFoo
d(00;f) = > 0(a;f) =1. Also let h be a entire function with regular
aFoo
growth having non zero finite order and © (oo;h) = > ,(a;h) =1
a#00
or § (oo;h) = > d(a;h) = 1 and g be any entire function such that
a#oo

0< )\5* (f,h) < ,05* (f,h) < oo where p is any positive integer. Then
for any A >0

N )
r—oolog Tjgol[h]TPo[f} (exp (r*)) + K (r, A; L)

:OO,

0ifr*=o0 {L (eXp (exp ([M“A)))}
where0 < p < pg and K (r, A; L) = asr — 0o
L (exp (exp (/LTA))) otherwise .

Proof. Let 0 < pu < p' < pg. Since T, L(r) is an increasing func-
tions, from the definition of relative ,L*-lower order we obtain in view
of Lemma 2.5, for a sequence of values of r tending to infinity that

log Th_leog (exp (rA)) > log Th_le (exp (exp (rA))“/> ,
that is,

log T}, ' Tfoq (exp (r?))
> ()\IE* (f,h) — 6) -log {GXP (exp (r4))"

’

~expl?l L (exp (exp (TA))M)}

= log T,;leog (exp (’I"A))
> ()\5* (f,h)— 5) . {(exp (’I“A))M/ +expP~ UL <exp (exp (TA))N,)}

= log Th_leog (exp (TA))

exol?1 I, (exp (exo (r4))
= (AzL:* (f,h)—a)- (exp (7)) | 1+ ’ ieipZi))i/( ) )
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= logm Th_leog (exp (T’A))

explP~U L (exp (exp (TA))“I> }

>0 (1) + ¢/ log ex ) +logd 1+ ;
(1) + p'logexp (r*) g{ p———

= logp] Th_leog (exp (rA))

>01)+ p@rd +log{ 1+ .
0+ s (exp (r4))*

explP~1 L (exp (exp (TA))N/) }

= 10g[2] T,:leog (exp (T‘A)>

>0 (1) +p'r? +log |1+

exp[p_l] L (eXp (exp (//TA)))
exp (u'r4)

= logp] Th_leog (exp (TA))
>0(1)+ ;/TA + L (exp (exp (MTA))) — log [exp {L (exp (exp (,urA))) }]

exph’_l} L (eXp (EXP (M’rA)))
exp (u'r4)

= logm Th_leog (exp (T’A))
>0 +urt+ L (exp (exp (/LT‘A)))

exp (u’rA) + explP~U L (exp (exp (u’rA)))
exp {L (exp (exp (ur#)))} - exp (u'r4)

+log |1+

+ log

(3.1)
= logPI T, ' Tyog (exp (1)) > O (1)+p/'r ) r# 4L (exp (exp (ur?))) -

Again in view of Lemma 2.3, we have for all sufficiently large values
of r that

log Ty 3 Ty 5 (exp (1))

< log (pf" (Polf], Rolh) + ) log {exp (1) - expl” L (exp (7))}
= log Tp 1y Ty l) (exp (7))

< (pﬁ* (f,h) + 8) log {exp (r) - expl”) L (exp (T“))}

= log Tgol[h]Tpo[f] (exp (1#))
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< (" (£.1) + ) {logexp () + exp ™V L (exp (1) }
= 1og Tp 1y Ty ) (exp (1))
< (o (1.0 +€) {+ expP ™ L exp () |

(3.2)
log T 1y Ty ) (exp (7)) = (o (£, h) + €) - expl? ™! L (exp (1)) <

(PL" (f,h) +¢) -

Now from (3.1) and (3.2) it follows for a sequence of values of r
tending to infinity that

=

(3.3)
logHT T (exp( )) O(1)+ LAM) X
e AT
108 T4 Ty ( )= (pE" (fh) + ) - explP ™ L (exp (1))

+ L (exp (exp (,ur )))

(3.4)
log® T, 1 Tpe, (exp (r)) - L (exp (exp (ur?))) + O (1)
log T i Tryig) (exp (1))~ log T 1y T i) (exp (1))
wr(A=r) (pﬁ* (f,h)+ 5) -explP~1 L (exp (1))
My ranenet R 1 '
py (fh) +e log Ty (g Tyt (exp (1))

Again from (3.3) we get for a sequence of values of r tending to infinity
that

logp] Th_leog (exp (TA))
log T 1y Try 1) (exp (7)) + L (exp (exp (ur)))
0 (1) A= - explP=1 L (exp (7))
" log Ty Tryfy) (exp (7)) + L (exp (exp (urr4)))

r(A—p) _1
(rlj; “()+e >1°g T in Trols) (exp (7))

log T}y T (xp (%)) + L (exp (exp (r4)))

L (exp (exp (/MA)))
log Ty Ty 1) (exp (7#)) + L (exp (exp (ur4)))
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(3.5)

R 08 73Ty exp ()

log Ty 1 Ty s (exp (#)) + L (exp (exp (pr4)))

O(1)— /(A=) .explP—1] [(exp(rH)) p'rA=m -1 m

Lep(ea™)) <p£* ez ) 108 Ty T (exp ()
longgl[h]Tp 17] (exp(r#)) 1+ LEexp(exp(,u.rA)))
L(gxp(exop(p/rA))) 1 log Tpol[h]TPo[f] (exp(r+))
1
log Tlgol[h]TPO[f] (exp(ri))

L(exp(exp(ur#)))

Case L If 7* = o {L (exp (exp (ur?)))} then it follows from (3.4)
that

g T (e ()
roolog Ty Ty (exp (1))

Case Il. r* # o {L (exp (exp (W“A)))} then two sub cases may arise.

Sub case (a). If L (exp (exp (/M"A))) =0 {log T;{)l[h}TPO[f] (exp (r“))},
then we get from (3.5) that

= log® T} ' Tyoq (exp () e
r=oolog T Try () (exp (7)) + L (exp (exp (ur?)))

Sub case (b). If L (exp (exp (,urpg*))) ~ longjol[h}Tpo[f] (exp ("))

then
lim L {exp (exp (/M“A))} _
r—oolog TI;ol[h} Tpy(y) (exp (1))

and we obtain from (3.5) that
_ 108 T, T (ex0 ()
im
roelog Ty Thyfg) (exp () + L (exp (exp (ur4)))
Combining Case I and Case Il we may obtain that
o T (e ()

r—oolog TP_’ol[h]TPo[f} (exp (r#)) + K (r, A; L)

=0 .

)

0if r#* = o{L (exp (exp (,urA)))} as r — 0o
L (exp (exp (/H“A))) otherwise.
This proves the theorem. ]

where K (r,A; L) = {
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THEOREM 3.2. Let g be an entire function either of finite order

or of non-zero lower order such that © (co;9) = > 0p(a;g) = 1 or
d(0059) = > 0(a;g) = 1. Also let h be a entirea;;;;ction of regular
growth hav?zé;non zero finite order with © (co;h) = Y 6p(a;h) =1
or 0 (oo;h) = > 0(a;h) =1 and f be any meromorplllljioj”unction such
?;;nAé);(JA;);iiooand pzj;j (9,h) < oo where p is any positive integer.

T Iog[g] T, 1Tfog (exp (’I“A))
roolog Ty Ty fg) (exp (1)) + K (r, A; L)
0ifr*=o0 {L (eXp (exp ([M“A)))}

where0 < p < pgand K (r, A; L) = asr — 0o
L (exp (exp (/LTA))) otherwise.

Y

The proof is omitted because it can be carried out in the line of
Theorem 3.1.

In the line of Theorem 3.1 and Theorem 3.2 respectively and with
the help of Lemma 2.4, one can easily proof the following two theorems
and therefore their proofs are omitted:

THEOREM 3.3. Let f be a transcendental meromorphic function of
finite order or of non-zero lower order such that Y.  d1(a; f) = 4.
ac€CU{oco}

Also let h be a transcendental entire function of regular growth having

non zero finite order with >  d1(a;h) = 4 and g be any entire
ac€CU{o0}

function such that 0 < )\5* (f,h) < ,05* (f,h) < oo where p is any
positive integer. Then for any A > 0

S logp] Th_leog (exp (TA))

lim — =00,
r=oelog Ty Ty (exp (r#)) + K (r, A; L)

0ifr*=o0 {L (eXp (exp (;M'A)))}
where 0 < p < pg and K (r, A; L) = asr — oo
L (exp (exp (W‘A))) otherwise .

THEOREM 3.4. Let g be a transcendental entire function of finite

order or of non-zero lower order such that > di1(a;g) = 4 . Also
acCU{oo}
let h be a transcendental entire function of regular growth having non
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zero finite order with Y.  d1(a;h) = 4 and f be any meromorphic
a€CU{o0}

function such that )\]’;f (f,h) > 0 and pﬁ* (9,h) < oo where p is any
positive integer. Then for any A > 0

=l T Ty (e ()

r—oo]og TA}%]TM[Q] (exp (r*)) + K (r, A; L)

=00,

0ifr*=o0 {L (exp (exp (,urA)))}
where 0 < p1 < pg and K (r, A; L) = asr — oo
L (exp (exp (,W‘A))) otherwise .

THEOREM 3.5. Let f be a meromorphic function either of finite order
or of non-zero lower order such that © (co; f) = > d,(a;f) =1 or
aFoo

d (o005 f)= > d(a;f)=1. Also let h be a entire function with regular

aF#00
growth having non zero finite order and © (oco;h) = > §, (a;h) =1 or
a#oo
d(oo;h) = > d0(a;h) =1 and g be any entire function such that 0 <
aFoo

L* * L* *
)‘p (ng,h) < Pp (foguh) < o0 and 0 < )‘p (f?h) < Pp (fah) < 00
where p is any positive integer. If L (T‘A) =o0 {log leol[h}Tpo[f] (T‘A)} as
r — oo then for any positive number A,

)‘]I;* (f °g, h‘) < 1 log Th_leOg (r)
AL F Ry o i = " i
App (f,h) r—oolog TPo[h}TPO[f] (r4) + L (r4)

< win M (fog h) pb (fogh)
B AN (f,h) 7 ApLT (f,h)

< d o Fogh) py (fogh)
B AN (f.h) 7 Apgt (f.h)
— log Th_leog (r) < Pﬁ* (fog,h)

< Ii

> am — > *
r=slog Ty Tryiy) (1) + L (r4) = AN (f, 1)

Proof. From the definition of relative , L*-order and relative , L*-lower
order of a meromorphic function with respect to an entire function and in
view of Lemma 2.3, we have for arbitrary positive ¢ and for all sufficiently
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large values of r that

log T) ' Toq (1) > </\£* (fog,h)— 5) log :r exp?l L (7’)}

= log Ty ' Tjoq (r) > (Ag* (fog,h)— 5) log r + expP~U L (r)]
(3.6)

= log T}, ' T}o, (r) > ()\5* (fog,h)— 5) logr + %exp[p*” L (TA)]

+ (Ale* (f og, h) — 6) [eXp[P—l] L (7“) _ %exp[p—l] I (’I"A):|
and

log T Ty () < (pg* (Polf], Polh]) + 5) log [w‘ expl? L (TA)}
= log leol[h]TpOm (T‘A) < (pg* (f,h)+ €> log |:’I“A exp? L (TA)}
= log Tlgol[h]Tpom (T’A) < (,05* (f,h)+ 8) [A logr + exp[p_” L (’I"A)}
(3.7)
log T i Tyl ()
A(pf (f,h) +¢)

<logr+ %exp[p*” L (T‘A) .

Now from (3.6) and (3.7) it follows for all sufficiently large values of
r that

L*
-1 (Ay (fog,h) —¢) . N
ey oo (1) 2 4 L () 4 ) 8 Tri TRl ()
* _ 1 _
+ (Aze (fog,h)— 5) [exp[p UL (r)— 1 exp[p I (rA)
log T}, ' Tfog ()
log T i Tryig) (1) + L (1)
L (Gogh)—e)  logTryyThn ()
" ALy (Fh)+e) logTyj Tagn () + L)
+ (Azg* (f °g, h) - 5) [exp[pfl] L (T) — % exp[pfl] L (TA)]
log TEOI[h]TPO[f} (r4) + L (r4)
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(3.8)

N log T) ' Tyoq (1)
log leol[h}TpO[f] (r4) + L (r4)

)\L*(fog,h)—a * <pP—1 [,
Afpg*(f,h)Jrs) ()‘5 (fogh)— 5) |:ef<pp[)771] L(E"Q) - %
= A —1 A
1+ _L(r ) log Tp, [h]Tpo[f](r )
log TPol[h]TPO[f] (r4) 1+ OL(TA)

Since L (TA) = O{lOgTI;[)l[h}Tpo[f] (TA)} as r — o0, it follows from
(3.8) that

log T 1T, AL h) —
(3.9)  lim———oh fj(r) > % (L{Og )=¢)
r—oolog TPo[h]TPO[f] (7" ) + L (1” ) A (pp (f, h) + 5)

As € (> 0) is arbitrary, we get from (3.9) that

log T 1T, AT . h
(3.10) lim ——— 5k fjm > (fog.h)
roolog Tp 1 Tpy( 1] (rd) + L (r4) Apy” (f,h)

Again for a sequence of values of r tending to infinity,
log T}, ' Tyog (r) < (Aﬁ “(fog,h)+ E) log [r expl”) L (7“)}
(3.11)
R 1
= log T}, ' Toy (r) < ()\5 (fog,h)+ 6) [logr + expP 1 L (rA)]

* 1
L —1 -1 A
+<>‘p (ng,h)+5) [exp[p ]L(T)—Zexp[p }L(r )}
and for all sufficiently large values of r,

log leol[h]TpO[f] (’I“A) > <)\IL,* (Po[f], Polh]) — 5) log [TA exp” L (T‘A)}
= log T};OI[h]TPO[f] (rA) > <)\5* (f,h) — 6) [A logr + expP~ U L (TA)}
(3.12)
log Tyt Tyl ()
AN (f,h) —¢)

> logr + %exp[p_l] L (rA) .
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Combining (3.11) and (3.12) we get for a sequence of values of r
tending to infinity that

. 05" (709, +)
s Ty oo (1) < 4 N (1 1) = )

+ ()\ZI;* (f og, h) + 5) |:exp[]9—1] L (’I") _ %exp[p—l] L (TA)

- A
log TPol[h]TPO[f] ()

log T) ' Tpoq (1)
log leol[h]Tpo[f] (r4) + L (r4)
A (fogh)+e  logTriyTry ()
T AN (fih)—2) log Ty Tpyp (rh) + L (1)
N ()\5* (fog,h)+ 6) [exp[p_l] L(r)— % expP~U L (’I“A)]
log leol[h}Tpo[f] (r4) + L (r4)

(3.13)

log Th_leog (r)
log Tgol[h]Tpo[f] (r4) + L (r4)

A (Fog e L opP L) 1
ACEUR) (A (fog,n)+e) [ gt — 4]
L(r4) loe T—L T )
L - S 1L py[n1* Pols]
" log TPollh]TPO[f] (r4) 1+ POLh(TA())

<

As L(r") = o{log TEOI[;L]TPOW (TA)} as 7 — oo we get from (3.13)
that
log T, T}, AL h
(3.14) lim 71033 h f:(r) < (L{Og ) +e .
r%mlOgTPO[h}Tpo[f] (rAY+L(r4) — A ()\p (f, h) — 5)

Since € (> 0) is arbitrary, it follows from (3.14) that

log T, YT AL h
(3.15) lim — o S (r) — < E{og )
r—00 log TPO[h]TPO [f] (7“ ) +L (T’ ) A>\p (fa h)

Also for a sequence of values of r tending to infinity,
log Tfjol[h]TPo[f] (rt) < ()\5* (Po[f], Polh]) + 5) log [T’A exp? L (T'A)}

= log leol[h]TpO[f] (TA) < ()\5* (f,h)+ 8) [A logr + epr’_” L (T‘A)}
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-1 A

log T 1 TPolf) (r)
AN (f,h) +¢)

Now from (3.6) and (3.16) we obtain for a sequence of values of r
tending to infinity that

_ (AL* (fog,h)—e) -
log T}, Tpoq (r) > Ap(AL* G e Ty Trots ()
D b}

(3.16) <logr + %exp[p*” L (T'A) :

+ ()\1[)“* (f og, h) - 6) |:6Xp[p_1} L (7’) _ %exp[p—l] I (T’A)

log Th_leOQ (r)
log Tlgol[h}Tpo[f] (r4) + L (r4)
M (fogh)—e  logTp Ty ()
AN (f.h) +e) log TF—,Ol[h]TPO[f] (r4) + L (r4)
(" (fog.h) — &) [expP 1 L (r) — JexpP L (r4)]
+ 1 —1 A A
08 Ty Trofp) (1) + L (74)

(3.17)

log Th_leog (r)
log Tgol[h]TpO[f] (r4) + L (r4)

Ay (Fogh)—e L opP L) 1

ACEUmT (A (fog,h)—e) [Shmg i — 4]
,IL(TA) 1 log Tlsol[h] TPO U] (rA)

log TPO[h]TPO[f] (r4) D)

>

1+

In view of the condition L (TA) =0 {log TI;OI[h}TPO[f] (TA)} asr — 0o
we obtain from (3.17) that

(3.18) i~ log T) ' Tog () )\5* (fog,h)—¢
) im > p .
r—oolog Tlgol[h}Tpo[f] (rAYy+ L(rd) — A ()\IE (f,h) + 5)

Since € (> 0) is arbitrary, it follows from (3.18) that

3.19 fim logTh_leog (T’) > /\5* (fog, h)
B g ToL T () - LGA) © AN (1)
081 piin L Pols) (7)) + LT p \Js
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Also for all sufficiently large values of r,

log Ty, Tyog (1) < (o (0 9.h) +¢) log [rexpl” L (7)]

= log T, 'Tjoy (r) < (p}f* (fog,h)+ 5) [logr +expP UL (r)]
(3.20)

« 1
= log T,:leog (r) < (pﬁ (fog,h)+ 6) {logr + i expP U L (rA)}

+ (,05* (fog,h)+ 8) [exp[p‘” L(r)— %exp[p—l} I (T,A)} ‘

So from (3.12) and (3.20) it follows for all sufficiently large values of r
that

. (o (fog,h)+e)
logTh Tng(r)S A()\ZI;* (f,h)—E)

* 1
+ ('01]? (fog.h)+ 5) [exp[p_l] L(r)— 1 explP~1 L (TA)

- A
log Tpol[h]TPo[f] (r*)

log TilefOQ (r)
7 log T, L Tpyp) (74) + L ()
08 Polh)t Polf]\T r
oy (fogh e louTpyTri ()
~ AN () —e) log Ty Tayy (rh) + L(r?)
(py" (fog,h) +e) [expP ML (r) — fexplP~I L (+4)]
log Tp 1y Tryiy) () + L (r#)

_|_

(3.21)
N log T) ' Tpoq (1)
log leol[h]TpO[f] (rd) + L (r4)

L*
Pp (fog,h)+e L* exp[pfl] L(r) 1
A(NL (f,h)—¢) (pp (fog,h)+ 8) |:exp[P*1] L(rd) A
= L(r#) log Ty, Tpo (1)
1 - 8 L py[n)* Polf)
+ log T, 11 T 1 () + OL(TA())

Using L (r) = o {log leol[h]TpOm (TA)} as r — oo we obtain from (3.21)
that
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(3.22) o log T) ' Tog () py (fog,h)+e
r—oolog Tlgol[h]Tpo[f] (rAYy+L(rd) — A ()\I%* (f,h)— 5)

As e (> 0) is arbitrary, it follows from (3.22) that

(3.23) im log Ty, ' Trog (r) py (fog.h)
r—oolog Tgol[h]Tpo[f] (r&)+ L (r4) — A)\II;J* (f,h)

From the definition of pp* (Po[f], Po[h]) and in view of Lemma 2.3,
we get for a sequence of values of r tending to infinity that

log T;()l[h]TpOm (rA) > (pg (Polf], Polh]) — 5) log |:’f'A expl?l L (rA)}

= 10gT1301[h}Tp0[f] (TA) > <p£* (f,h)— 5) [A logr + exp[p_l] L (rA)}

log Ty i Troigy () 1
. >logr+ — exp[p_” L (r4).

Now from (3.20) and (3.24) it follows for a sequence of values of r
tending to infinity that

(PE" (fog,h) +e)
A (Pﬁ* (f> h) - 5)

* 1
+ (ng (fog.h)+ 5) {GXP@_” L(r)— 1 expP~ UL (rA)

(3.24)

log T, Tpog (1) < log Ty Tryrg) ()

N log Th_leog (r)
log T;()l[h}Tpo[f] (r4) + L (r4)

Pk (fogh)+e  logTpyThys ()
T A(pL (f,h)—¢€) log Tgol[h]Tpo[f] (r4) + L (r4)
(0" (fog,h) +e) [explP~U L (r) — % explP~t L (r)]
log leol[h]TpOm (r4) 4+ L (r4)

+

log T) ' Tyoq (1)

log Tlgol[h}Tpo[f] (r4) + L (r4)

(3.25) =
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pL* (fog7h‘)+€ I* ex [p—1] L( ) 1
Az(jpll)‘* (f,h)*E) (pp (‘f ° g’ h) + 6) |:expp[)P*1] L(r’;) - Z
| L(r4) log T - Tpy 17 (r )
o T Try () L+ —05

Using L (r) = o {log T}Zol[h]TpO[f} (rA)} as r — oo we obtain from (3.25)
that
(326)  lim log 7, Teg (1) _py (fogh)+e

B o Ty T () + L6 = A (10— )

As e (> 0) is arbitrary, it follows from (3.26) that

log T, T}, L h
(3.27) lim —— ok fj(r) < SATIL
r—oolog Ty iy Ty (] (1) + L (1) Apy” (f,h)

Again for a sequence of values of r tending to infinity,

log Th_leog (r) > (pﬁ* (fog,h)— 5) log {7‘ exp? L (7‘)}

= log T} 'Tyoy (r) > <p£* (fog,h)— 5) {logr + expP L (r)}
(3.28)

- 1
= log T;leog (r) > <p£ (fog,h)— s) [logr + 1 expP~ UL (TA)]

+ (pﬁ* (fog,h)— 6) [exp[p—ll L(r)— %exp[p—l] I (rA)] '

So combining (3.7) and (3.28) we get for a sequence of values of r
tending to infinity that

(b (fog,h) —e)
A(pL™ (f,h) +e)
+ (p;%* (fog,h)— 5) [eXp[p_l} L(r)— %exp[p_” L (TA)]

N log Th_leog (r)
log Tgol[h]TpO[f] (r4) + L (r4)

log Th_leog (r) > log leol[h]TpO[f] (TA)

(o (fog.h)—e) log T, ' Ty (r)
4 (P;%* (f,h) +e¢) . longgol[h]TPO[f] (rA) + L (r4)
(o (Fo9.0) — ) [expl 1 L (1) — Jexp 11 L (+4)]
log Ty Tryis) () + L ()

_l’_
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(3.29)

N log T) ' Tyoq (7)
log leol[h}Tpo[f] (rd) + L (r4)

Py (Jogh)—e L N
A(pL™ (f,h)+e) (pp (fog,h)— 5) {W -3
1 L(r#) log T, Tpo 7(r )
* iog T Tt () 1+ PO[Lh](rA())

Since L (’I“A) = o{log T;()l[h}Tpo[f] (7“‘4)} as r — oo, it follows from
(3.29) that

— —1 L* ) —
(3.30) lim jogTh Tfo: (r) > Py (L{og, )—¢
T—)OO]OgTPO[h]TPO[f] (rd) + L (r4) A(Pp (f, h)+€)

As e (> 0) is arbitrary, we get from (3.30) that

_ log T, ' To L h
(3.31) fim ——— o fj(r) > {(fo5,R)
r—00 IOg TPO[h]TPU[f] (T‘ ) + L (’I" ) App (f, h)

Thus the theorem follows from (3.10),(3.15),(3.19), (3.23), (3.27)
and (3.31). O

Similarly in view of Theorem 3.5, we may state the following theorem
without proof for the right factor g of the composite function fog :

THEOREM 3.6. Let g be an entire function either of finite order or of
non-zero lower order such that © (co;g) = Y 0, (a;9) =1 ord (c0;g) =
> d(a;9) =1. Also let h be a entire funca;gz of regular growth having
272;0 zero finite order with © (co;h) = > 0y (a;h) = 1 or d (ocojh) =
; d(a;h) = 1 and f be any meromgf;?ﬁc function such that 0 <
a0

L* L* L L*
Ay (fog,h) <py (fog,h) <oo,and 0 <\, (g9,h) < py (9,h) < oo
where p is any positive integer. If L (TA) =0 {log T;()l[h}Tpo[g] (7"‘4)} as
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r — oo then for any positive number A,

N (Fogh) _ log Ty " Tpag (7)
———— < lim — 0 -
App (97 h) T—)oolog TPo[h}TPO[Q} (7" ) + L (7« )
in {Aﬁ* (fog,h) (fog,h)}
AN (g, h) 7 ApE” (g, h)
N (fogh) py (fog,h)
max L* , =
_— logT Tfog( T) <p£*(fog,h)

S 1 — * *
7“—>0010gT Polh }TPO[Q} ( ) +L (TA) AA]% (g, h)

In the line of Theorem 3.5 and Theorem 3.6 respectively and with
the help of Lemma 2.4, one can easily proof the following two theorems
and therefore their proofs are omitted:

THEOREM 3.7. Let f be a transcendental meromorphic function of

finite order or of non-zero lower order such that >  d1(a; f) = 4.
acCU{o0}
Also let h be a transcendental entire function of regular growth having

non zero finite order with Y.  di(a;h) = 4 and g be any entire
a€eCU{oo}

function such that 0 < )\5* (fog,h) < ,05* (fog,h) < oo and 0 <
)‘L* (f,h) < Pp* (f,h) < oo where p is any positive integer. If L (rA) =
{log M[h]TM[f} (’I“A)} as r — oo then for any positive number A,

L* _
W Gooh) L el 0

Apk” (f,h) —TzologTﬂgl[h]TMm( )+L(
Smm{kﬁ*(fog,h) Pk (fog,h }

ANLT(f,h) APp* D)
L*
Smax{kp (fog.h) p5 (fog,h }

AN (fh) App* f.h)

= log Ty Y Toq () pp (fog,h)

- rolog Ty, HTM[f]( )+L( )_ A)‘L* (fsh)

THEOREM 3.8. Let g be a transcendental entire function of finite

order or of non-zero lower order such that >  d1(a;g9) = 4 . Also
aeCU{oo}
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let h be a transcendental entire function of regular growth having non

zero finite order with Y d1(a;h) = 4 and f be any meromorphic
ac€CU{o0}

function such that 0 < )\5* (fog,h) < pﬁ* (fog,h) < oo, and 0 <
* * . .. . Ay _
)\If (g,h) < p£ (g,h) < oo where p is any positive integer. If L (r ) =

0 {log T]ﬁh]TM[g] (rA)} as r — oo then for any positive number A,
M < lim log T}lefog (r)
Apg”(9:h)  rooolog Ty Targg) (r4) + L (r4)

o M (fogh) ph (fog h)
< min T~ s =
AN (g:h) 7 Apf (g h)

Smax{Aﬁ*(fog,m p£*<fog,h>}

ANL" (g, h) 7 ApE” (g, h)
_ L*
< m logTh leog (T) < pp (ng,h)

~ r—oolog Tﬂ}l[h]TM[g} (rA) + L (r4) — A)\ﬁ* (g,h)

THEOREM 3.9. Let f be a meromorphic function either of finite order
or of non-zero lower order such that © (co; f) = > 0p(a;f) =1 or

aFoo
d(oo; f) = >.d(a;f) = 1. Also let h be a entire function of regular
a#oo
growth having non zero finite order with © (co;h) = > 0p(a;h) =1
a#£oo
or § (oo;h) = > d(a;h) = 1 and g be any entire function such that
aF#00

pﬁ* (f,h) < oo and )\5* (fog,h) = oo where p is any positive integer.
Then
log T) ' Toq (1)

1m
r—oclog TI;ol[h] Try( (7)

= OQ.

Proof. Let us suppose that the conclusion of the theorem do not hold.
Then we can find a constant 5 > 0 such that for a sequence of values of
r tending to infinity

(3.32) log T, 'Tfoq (r) < B -log Ty Ty (1) -

Again from the definition of pp* (Polf], Po[h]) and in view of Lemma
2.3, it follows for all sufficiently large values of r that

log Ty i Ty (1) < (Pﬁ* (Polf], Polh]) + 8) log [7“ expl”) L (T)] :
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(3.33) i.e., log Po[h]TPO[f] (r) < (pg (f,h)+ 5) log [r exp”! L (r)} .

Thus from (3.32) and (3.33) we have for a sequence of values of r
tending to infinity that

log Ty 'Tiog (r) < B (pg (f,h)+ 5) log [r exp?l L (T)}
log T, 'Tyoy (r)  _ Blpg (f,h)+¢)log [rexp L ()]

e log [rexplPl L (r)] — log [rexplPl L (r)]
log T}~ L., X
i.e., lim o8 fog (1) = /\5 (fog,h) <oo.
r—oolog [r exp[P (r)]
This is a contradiction. Hence the theorem follows. O

In the line of Theorem 3.9, one can easily prove the following theorem
and therefore its proof is omitted.

THEOREM 3.10. Let g be an entire function with finite order or of
non-zero lower order such that © (co;g) = > 0p(a;9) =1 ord (o0;9) =
a#00

> 0 (a;g) = 1. Also let h be a entire function of regular growth having
(1117;)10 zero finite order with © (co;h) = Y 0p(a;h) = 1 or § (cojh) =
>> 0 (a;h) =1 and f be any meromorph;j;;nction such that pﬁ* (g,h) <
zoznd )\5* (f o g,h) = oo where p is any positive integer. Then
lim log ?ileog ) =00
r—oolog Ty Trolg) (r)

REMARK 3.11. Theorem 3.9 is also valid with “limit superior” instead
of “limit” if Aﬁ* (f o g,h) = oo is replaced by pﬁ* (fog,h) = oo and the
other conditions remain the same.

REMARK 3.12. Theorem 3.10 is also valid with “limit superior” in-
stead of “limit” if )\5* (fog,h) = oo is replaced by ng* (fog,h) =0
and the other conditions remain the same.

COROLLARY 3.13. Under the assumptions of Theorem 3.9 and Re-
mark 3.11,
T, ' Ty T, Ty,
hmwzmwd hmMZm
T%OOT Polh }TPO[f] (7") r—00 Po[h]TPO[f] (7’)

respectively.
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Proof. By Theorem 3.9 we obtain for all sufficiently large values of r
and for K > 1,

log Ty 'Tyog (r) > Klog Ty Trypy (1)

. -1 —1 ®
1.€., Th Tfog (T) > {TPO[h}TPO[f] (T)} ’

from which the first part of the corollary follows.
Similarly using Remark 3.11, we obtain the second part of the corol-
lary. O

COROLLARY 3.14. Under the assumptions of Theorem 3.10 and Re-
mark 3.12,

Ti:leOQ (7)

lim —% =00 and lim —5F————— =00
r=0 T i Trofg) (1) =Ty i Trofg) (1)
respectively.

In the line of Corollary 3.13, one can easily verify Corollary 3.14 with
the help of Theorem 3.10 and Remark 3.12 respectively and therefore
its proof is omitted.

In the line of Theorem 3.9 and Theorem 3.10 respectively and with
the help of Lemma 2.4, one can easily proof the following two theorems
and therefore their proofs are omitted:

THEOREM 3.15. Let f be a transcendental meromorphic function of
finite order or of non-zero lower order such that >  d1(a; f) = 4.
ac€CU{o0}
Also let h be a transcendental entire function of regular growth having
non zero finite order with Y.  di(a;h) = 4 and g be any entire
a€eCU{oo}
function such that ,0,5* (f,h) < oo and )\5* (f o g,h) = oo where p is any
positive integer. Then
-1
o T T ()
r—o]og TM[h]TM[ﬁ (7“)

THEOREM 3.16. Let g be a transcendental entire function of finite
order or of non-zero lower order such that > di1(a;g9) = 4 . Also
ac€CU{oo}
let h be a transcendental entire function of regular growth having non
zero finite order with .  di(a;h) = 4 and f be any meromorphic
ac€CU{oo}
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function such that pﬁ* (g,h) < o0 and )\5* (f o g,h) = oo where p is any
positive integer. Then

log T) ' Tpoq (1)
r—oo]og T];[l[h} TM[g] (r)

=0 .

REMARK 3.17. Theorem 3.15 is also valid with “limit superior” in-
stead of “limit” if )\Ie* (fog,h) = o is replaced by plg* (fog,h) =
and the other conditions remain the same.

REMARK 3.18. Theorem 3.16 is also valid with “limit superior” in-
stead of “limit” if /\5* (fog,h) = oo is replaced by p;}* (fog,h) =
and the other conditions remain the same.

COROLLARY 3.19. Under the assumptions of Theorem 3.15 and Re-
mark 3.17,

T, Ty, — Ty,
lim —A& o9 g (1) = 00 and lim —A 97 g (1)

rooo T Ty (r) rooo T Ty (r)

= o0

respectively.

COROLLARY 3.20. Under the assumptions of Theorem 3.16 and Re-
mark 3.18,

T Tpeg (1)
Tli{goT_hl T ” r—>ooT_1
ain Taalg) () i Tvtg) (1)

respectively.

In the line of Corollary 3.13, one can easily verify the above two
corollaries with the help of Theorem 3.15; Remark 3.17 and Theorem
3.16, Remark 3.18 respectively and therefore their proofs are omitted.

From the definitions of relative ,L*-order and relative , L*- lower order
and with help of Lemma 2.3, one can easily verify the following theorem.

THEOREM 3.21. Let f and g be any two meromorphic functions both
either of finite order or of non-zero lower order such that © (co; f) =

a#zooép (a;f)=1lord(oo; f) = a;mé (a; f) =1and © (005 9) = a;ézooép (a;9) =
1 ord(oo;9) = >, d(a;g) = 1 respectively. Also let h and k be any
two entire funct;loflog both of regular growth having non zero finite or-
der with © (co;h) = > 0p(a;h) = 1 or §(oco;h) = > 0(a;h) =1
and O (oo k) = ; (?f(ocj;k) =1 or §(oos k) = gagég;k) = 1. If
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0 < AL (f,k) < pE" (fk) < o0 and 0 < A" (g,h) < pl" (9.h) < oo
where p is any positive integer, then

* —1 * *
)‘]I; (fv k) . log TPo[k]TPOf] (T) . )‘;[7/ (fv k) p{; (fv k)
T 7y = lm = < min § 75 I

Pp (9,h) r—oolog TPO [] TPO 9] (r) )\p (9, 1) Pp (9,h)

* * —1 *
_ Ao (K)o (FR) | _ o 108 T TR, () _ oy (fF)
=N ) pE (g h) [ = roeolog ToL T = NF (g h)
p \9: 1) Py \Y 08 L py[n) Polg) () p \9

The proof of the above theorem is omitted.

THEOREM 3.22. Let f and g be any two transcendental meromorphic
functions both of finite order or of non-zero lower order with

Z d1(a; f) =4 and Z 01(a;g9) =4
a€CU{oo} a€CU{oo}

respectively. Also let h and k be any two transcendental entire functions
both of regular growth having non zero finite order with > d1(a; h)
a€CU{o0}
=4 and > i(ak) = 4. If0<)\£*(f,k:)Spﬁ*(f,k:)<ooand
a€CU{oo}

0< /\5* (g,h) < pﬁ* (g, h) < oo where p is any positive integer, then

* —1 * *
Py (9:h) T r=oclog Ty Ty (1) ~ A5 (9.h) pf (g, 1)
AL(F k) PR (fk _— -1 L™ (f,k
< max ;z* (fv )7pi* (f7 ) < Tim logTﬁl Tfog(r) < pi*(fa ) ‘
)‘p (9,h) Pp (9,h) r—log Tp[h]TP[g] (1) )\p (9, 1)
In the line of Theorem 3.21 and with the help of Lemma 2.4 one may

easily establish the conclusion of the above theorem and therefore its
proof is omitted.
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