• Title/Summary/Keyword: polynomial degree

Search Result 305, Processing Time 0.02 seconds

CONSTRUCTION OF A SYMMETRIC SUBDIVISION SCHEME REPRODUCING POLYNOMIALS

  • Ko, Kwan Pyo
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.395-414
    • /
    • 2016
  • In this work, we study on subdivision schemes reproducing polynomials and build a symmetric subdivision scheme reproducing polynomials of a certain predetermined degree, which is a slight variant of the family of Deslauries-Dubic interpolatory ones. Related to polynomial reproduction, a necessary and sufficient condition for a subdivision scheme to reproduce polynomials of degree L was recently established under the assumption of non-singularity of subdivision schemes. In case of stepwise polynomial reproduction, we give a characterization for a subdivision scheme to reproduce stepwise all polynomials of degree ${\leq}L$ without the assumption of non-singularity. This characterization shows that we can investigate the polynomial reproduction property only by checking the odd and even masks of the subdivision scheme. The minimal-support condition being relaxed, we present explicitly a general formula for the mask of (2n + 4)-point symmetric subdivision scheme with two parameters that reproduces all polynomials of degree ${\leq}2n+1$. The uniqueness of such a symmetric subdivision scheme is proved, provided the two parameters are given arbitrarily. By varying the values of the parameters, this scheme is shown to become various other well known subdivision schemes, ranging from interpolatory to approximating.

IRREDUCIBILITY OF POLYNOMIALS AND DIOPHANTINE EQUATIONS

  • Woo, Sung-Sik
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.101-112
    • /
    • 2010
  • In [3] we showed that a polynomial over a Noetherian ring is divisible by some other polynomial by looking at the matrix formed by the coefficients of the polynomials which we called the resultant matrix. In this paper, we consider the polynomials with coefficients in a field and divisibility of a polynomial by a polynomial with a certain degree is equivalent to the existence of common solution to a system of Diophantine equations. As an application we construct a family of irreducible quartics over $\mathbb{Q}$ which are not of Eisenstein type.

The Effect of Air Vent Holes and Stacking Methods of Fruits and Vegetables Boxes on Static Pressure Drop in Pressure Cooling System (청과물상자의 통기공 및 상자적재방법이 정압강하에 미치는 영향)

  • 김의웅;김병삼;남궁배;정진웅;김동철;금동혁
    • Journal of Biosystems Engineering
    • /
    • v.20 no.4
    • /
    • pp.360-367
    • /
    • 1995
  • The effect of air vent holes, stacking methods of boxes and clearance between boxes on static pressure drop, were measured to design of pressure cooling system. Static pressure drops in air vent hole of carton box were measured for different hole opening ratio from 1% to 5%. Static pressure drop was expressed as a function of superficial velocity as second-degree polynomial. At given static pressure in plenum chamber, static pressure drop in boxes was shown as second-degree polynomial of the number of carton box in series stacking method, as first-degree polynomial in height and parallel stacking method. In pressure cooling of 24 boxes of Tsugaru apple, air flow rates through clearance between the boxes were shown 1.27 and 1.65 times than those of through the inside of boxes at the plenum pressure of 10mmAq and 20mmAq, respectively.

  • PDF

DIFFERENTIAL EQUATIONS RELATED TO FAMILY A

  • Li, Ping;Meng, Yong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.247-260
    • /
    • 2011
  • Let h be a meromorphic function with few poles and zeros. By Nevanlinna's value distribution theory we prove some new properties on the polynomials in h with the coefficients being small functions of h. We prove that if f is a meromorphic function and if $f^m$ is identically a polynomial in h with the constant term not vanish identically, then f is a polynomial in h. As an application, we are able to find the entire solutions of the differential equation of the type $$f^n+P(f)=be^{sz}+Q(e^z)$$, where P(f) is a differential polynomial in f of degree at most n-1, and Q($e^z$) is a polynomial in $e^z$ of degree k $\leqslant$ max {n-1, s(n-1)/n} with small functions of $e^z$ as its coefficients.

ON STABILITY OF A POLYNOMIAL

  • KIM, JEONG-HEON;SU, WEI;SONG, YOON J.
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.231-236
    • /
    • 2018
  • A polynomial, $p(z)=a_0z^n+a_1z^{n-1}+{\cdots}+a_{n-1}z+a_n$, with real coefficients is called a stable or a Hurwitz polynomial if all its zeros have negative real parts. We show that if a polynomial is a Hurwitz polynomial then so is the polynomial $q(z)=a_nz^n+a_{n-1}z^{n-1}+{\cdots}+a_1z+a_0$ (with coefficients in reversed order). As consequences, we give simple ratio checking inequalities that would determine unstability of a polynomial of degree 5 or more and extend conditions to get some previously known results.

Lagrange and Polynomial Equations (라그랑주의 방정식론)

  • Koh, Youngmee;Ree, Sangwook
    • Journal for History of Mathematics
    • /
    • v.27 no.3
    • /
    • pp.165-182
    • /
    • 2014
  • After algebraic expressions for the roots of 3rd and 4th degree polynomial equations were given in the mid 16th century, seeking such a formula for the 5th and greater degree equations had been one main problem for algebraists for almost 200 years. Lagrange made careful and thorough investigation of various solving methods for equations with the purpose of finding a principle which could be applicable to general equations. In the process of doing this, he found a relation between the roots of the original equation and its auxiliary equation using permutations of the roots. Lagrange's ingenious idea of using permutations of roots of the original equation is regarded as the key factor of the Abel's proof of unsolvability by radicals of general 5th degree equations and of Galois' theory as well. This paper intends to examine Lagrange's contribution in the theory of polynomial equations, providing a detailed analysis of various solving methods of Lagrange and others before him.

${\mathfrak{A}}$-GENERATORS FOR THE POLYNOMIAL ALGEBRA OF FIVE VARIABLES IN DEGREE 5(2t - 1) + 6 · 2t

  • Phuc, Dang Vo
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.371-399
    • /
    • 2020
  • Let Ps := 𝔽2[x1, x2, …, xs] = ⊕n⩾0(Ps)n be the polynomial algebra viewed as a graded left module over the mod 2 Steenrod algebra, ${\mathfrak{A}}$. The grading is by the degree of the homogeneous terms (Ps)n of degree n in the variables x1, x2, …, xs of grading 1. We are interested in the hit problem, set up by F. P. Peterson, of finding a minimal system of generators for ${\mathfrak{A}}$-module Ps. Equivalently, we want to find a basis for the 𝔽2-graded vector space ${\mathbb{F}}_2{\otimes}_{\mathfrak{A}}$ Ps. In this paper, we study the hit problem in the case s = 5 and the degree n = 5(2t - 1) + 6 · 2t with t an arbitrary positive integer.

A Study on primitive polynomial in stream cipher (스트림암호에서 원시다항식에 대한 고찰)

  • Yang, Jeong-mo
    • Convergence Security Journal
    • /
    • v.18 no.4
    • /
    • pp.27-33
    • /
    • 2018
  • Stream cipher is an one-time-pad type encryption algorithm that encrypt plaintext using simple operation such as XOR with random stream of bits (or characters) as symmetric key and its security depends on the randomness of used stream. Therefore we can design more secure stream cipher algorithm by using mathematical analysis of the stream such as period, linear complexity, non-linearity, correlation-immunity, etc. The key stream in stream cipher is generated in linear feedback shift register(LFSR) having characteristic polynomial. The primitive polynomial is the characteristic polynomial which has the best security property. It is used widely not only in stream cipher but also in SEED, a block cipher using 8-degree primitive polynomial, and in Chor-Rivest(CR) cipher, a public-key cryptosystem using 24-degree primitive polynomial. In this paper we present the concept and various properties of primitive polynomials in Galois field and prove the theorem finding the number of irreducible polynomials and primitive polynomials over $F_p$ when p is larger than 2. This kind of research can be the foundation of finding primitive polynomials of higher security and developing new cipher algorithms using them.

  • PDF