References
- A. S. Cavaretta, W. Dahmen, and C. A. Michelli, Stationary subdivision, Mem. Amer. Math. Soc. 93 (1991), no. 453, vi+186 pp.
- S. W. Choi, B. G. Lee, Y. J. Lee, and J. Yoon, Stationary subdivision schemes reproducing polynomials, Comput. Aided Geom. Design 23 (2006), no. 4, 351-360. https://doi.org/10.1016/j.cagd.2006.01.003
- C. Conti and K. Hormann, Polynomial reproduction for univariate subdivision schemes of any arity, Technical Report 2010/02, Univ. of Lugano, 2010.
- G. Deslauriers and S. Dubuc, Symmetric iterative interpolation processes, Constr. Approx. 5 (1989), no. 1, 49-68. https://doi.org/10.1007/BF01889598
- B. Dong and Z. Shen, Construction of biorthogonal wavelets from pseudo-splines, J. Approx. Theory 138 (2006), no. 2, 211-231. https://doi.org/10.1016/j.jat.2005.11.008
- B. Dong and Z. Shen, Linear independence of pseudo-splines, Proc. Amer. Math. Soc. 134 (2006), no. 9, 2685-2694. https://doi.org/10.1090/S0002-9939-06-08316-X
- B. Dong and Z. Shen, Pseudo-splines, wavelets and framelets, Appl. Comput. Harmon. Anal. 22 (2007), no. 1, 78-104. https://doi.org/10.1016/j.acha.2006.04.008
- N. Dyn, Subdivision schemes in computer-aided geometric design, Advances in numerical analysis, Vol. II (Lancaster, 1990), 36-104, Oxford Sci. Publ., Oxford Univ. Press, New York, 1992.
- N. Dyn, Interpolatory subdivision schemes, in: A. Iske, E. Quak, M. Floater (Eds.), Tutorials on Multiresolution in Geometric Modelling Summer School Lecture Notes Series, Mathematics and Visualization, Springer, 2002.
- N. Dyn, J. A. Gregory, and D. Levin, A 4-point interpolatory subdivision scheme for curve design, Comput. Aided Geom. Design 4 (1987), no. 4, 257-268. https://doi.org/10.1016/0167-8396(87)90001-X
- N. Dyn, J. A. Gregory, and D. Levin, Analysis of uniform binary subdivision schemes for curve design, Constr. Approx. 7 (1991), no. 2, 127-147. https://doi.org/10.1007/BF01888150
- N. Dyn, K. Hormann, M. Sabin, and Z. Shen, Polynomial Reproduction by Symmetric Subdivision Schemes, J. Approx. Theory 155 (2008), no. 1, 28-42. https://doi.org/10.1016/j.jat.2008.04.008
- N. Dyn and D. Levin, Subdivision schemes in geometric modelling, Acta Numerica 11 (2002), 11-73.
- B. Han, Vector cascade algorithms and refinable function vectors in Sobolev spaces, J. Approx. Theory 124 (2003), no. 1, 44-88. https://doi.org/10.1016/S0021-9045(03)00120-5
- B. Han, Symmetric orthogonal filters and wavelets with linear-phase moments, preprint.
- K. Hormann and M. A. Sabin, A family of subdivision schemes with cubic precision, Comput. Aided Geom. Design 25 (2008), no. 1, 41-52. https://doi.org/10.1016/j.cagd.2007.04.002
- R. Q. Jia, Approximation properties of multivariate wavelets, Math. Comp. 67 (1998), no. 222, 647-665. https://doi.org/10.1090/S0025-5718-98-00925-9
- R. Q. Jia and Q. T. Jiang Approximation power of refinable vectors of functions, Wavelet analysis and applications (Guangzhou, 1999), 155-178, AMS/IP Stud. Adv. Math., 25, Amer. Math. Soc., Providence, RI, 2002.
- K. P. Ko, B. G. Lee, Y. Tang, and G. J. Yoon, General formula for the mask of (2n+4)-point symmetric subdivision scheme, Preprint, 2007.
- K. P. Ko, B. G. Lee, and G. J. Yoon, A study on the mask of interpolatory symmetric subdivision schemes, Appl. Math. Comput. 187 (2007), no. 2, 609-621. https://doi.org/10.1016/j.amc.2006.08.089
- A. Levin, Polynomial generation and quasi-interpolation in stationary non-uniform subdivision, Comput. Aided Geom. Design 20 (2003), no. 1, 41-60. https://doi.org/10.1016/S0167-8396(03)00006-2
- J. M. de Villiers, K. M. Goosen, and B. M. Herbst, Dubuc-Deslauriers subdivision for finite sequences and interpolation wavelets on an interval, SIAM J. Math. Anal. 35 (2003), no. 2, 423-452. https://doi.org/10.1137/S0036141001386830
- J. Warren and H. Weimer, Subdivision Methods for Geometric Design, Morgan Kaufmann, 2002.
- A.Weissman, A 6-point interpolatory subdivision scheme for curve design, M.Sc. Thesis, Tel-Aviv University, 1989.