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IRREDUCIBILITY OF POLYNOMIALS AND
DIOPHANTINE EQUATIONS

Sung Sik Woo

Abstract. In [3] we showed that a polynomial over a Noetherian ring is
divisible by some other polynomial by looking at the matrix formed by
the coefficients of the polynomials which we called the resultant matrix.
In this paper, we consider the polynomials with coefficients in a field
and divisibility of a polynomial by a polynomial with a certain degree is
equivalent to the existence of common solution to a system of Diophantine
equations. As an application we construct a family of irreducible quartics
over Q which are not of Eisenstein type.

1. Introduction

In this paper we show that the reducibility of a polynomial is the same as
the existence of the solutions to some Diophantine equations. To determine
whether a Diophantine equation has a solution or not is not, of course, easier
than to determine whether a polynomial is irreducible or not. However the
problems of Diophantine equations has a long history and there are a large
amount of results which are available to use. Therefore we expect to use those
results to deduce the results on irreducibility of polynomials and vice versa.

In Section 2, we recall the resultant matrix of polynomials and a criterion for
divisibility of polynomials by using the resultant matrix which is shown in [3].
Then we show that irreducibility of a polynomial over a Noetherian domain is
equivalent to the existence of common solution of some Diophantine equations.

In Section 3, for a given polynomial, we give an explicit description of the
Diophantine equations whose existence of a common solution is equivalent to
the existence of a divisor of the polynomial.

In Section 4, using the result on the group structure of rational points on
elliptic curves we construct a ‘family’ of irreducible quartics which are non-
Eisensteinian. In Section 5, we make a few remarks on irreducibility of quintics.

Throughout all rings are commutative with the identity 1.
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2. Resultant matrix and divisibility of polynomials

In this section we recall the result of [3] which we will use later. To fix our
notations let A be a commutative ring and F1, F2 be A-free modules with bases
β = {v1, v2, . . . , vn} and γ = {w1, w2, . . . , wm} of F1 and F2 respectively. Let
φ : F1 → F2 be an A-linear map. Then the matrix X = (xij) ∈ M(n ×m,A)
of φ with respect to the bases β and γ is defined by the equality

φ(vi) =
m∑

j=1

xijwj (i = 1, 2, . . . , n).

Here we denote the matrices of size n×m with coefficients in A by M(n×m,A).
If ψ : F2 → F3 is another A-linear map of free modules with matrix Y , then
the matrix corresponding to ψ ◦ φ will be XY . Let A be a commutative ring.
For positive integers n,m let f, g ∈ A[X] be the polynomials

f(X) = anX
n + an−1X

n−1 + · · ·+ a0,

g(X) = bmX
m + bm−1X

m−1 + · · ·+ b0.

Let Sn be the A-submodule of A[X] consisting of polynomials of degree < n.
Choose bases B1 (resp. B2) of Sm × Sn (resp. Sn+m ) by

B1 = {(Xm−1, 0), . . . , (X, 0), (1, 0), (0, Xn−1), . . . , (0, X), (0, 1)}
(B2 = {Xn+m−1, . . . , X, 1}).

Define an A-linear map φ : Sm × Sn → Sn+m by

φ(u, v) = uf + vg.

Let us denote R(f, g) the matrix of φ with respect to B1 and B2,

R(f, g) =




an an−1 · · · 0 a0 0 · · · 0
0 an an−1 · · · a1 a0 · · · 0

· · · · · · . . . · · · · · · · · · · · · 0
0 · · · 0 an an−1 · · · · · · a0

bm bm−1 · · · b1 b0 0 0 0
0 bm bm−1 · · · b1 b0 0 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · bm bm−1 0 · · · b0




.

The square matrix R(f, g) of size (n+m) will be called the resultant matrix and
the determinant of the resultant matrix R(f, g) is called the resultant res(f, g)
of f and g.

Now we state a main result of [3, Theorem 4.4] in the form we will use.

Theorem 2.1. Let A be a Noetherian commutative ring and f, g ∈ A[X] be
monic polynomials of degree n and m respectively with n > m. Then g(X)
divides f(X) if and only if the condition

(R) the minors of R(f, g) of size bigger than n vanishes
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is satisfied.

Remark. In (iv), of [3, Theorem 4.4] we may assume that an is a unit and the
condition “the minors of R(f, g) of size n generate the unit ideal” is redundant
since the n × n matrix in the low left corner of R(f, g) has determinant bnm is
a unit already because we assumed an is a unit.

Let f, g be the monic polynomials

f(X) = Xn + an−1X
n−1 + · · ·+ a0,

g(X) = Xm + bm−1X
m−1 + · · ·+ b0

over a commutative ring A with n > m. Let t = (t0, t1, . . . , tm−1) be the
variables and let

gt(X) = Xm + tm−1X
m−1 + · · ·+ t0 .

Let J, J ′ be subsets of {1, 2, . . . ,m+ n} which consists of n+ 1 elements. Let
R(f, g)J,J ′ be the submatrix of R(f, g) comprised of j-th row and j′-th column
for every j ∈ J and j′ ∈ J ′. And let µJ,J ′ = det(R(f, gt)J,J ′). Notice that µJ,J ′

always contains ti’s since n > m, i.e., µJ,J ′ are polynomials in the variables
t0, t1, . . . , tm−1.

Corollary 2.2. With the same notations of the theorem f(X) is divisible by
a polynomial of degree m if and only if the set of polynomials µJ,J ′(t0, t1, . . .,
tm−1) has a common solution (b0, b1, . . . , bm−1). In this case,

g(X) = Xm + bm−1X
m−1 + · · ·+ b0

divides the polynomial f(X).

If A is a Noetherian domain, then we can simplify these polynomials. First
we need a fact which probably is well known.

Lemma 2.3. Let F = An be the free module of rank n. Let S = {v1, v2, . . . , vm}
(m ≤ n) be a set of vectors. Let M be the m × n matrix whose rows are
{v1, v2, . . . , vm} and for J ⊂ {1, 2, . . . , n} consisting of m elements, M (J) be
the submatrix consisting of J-columns and µJ be its determinant. Then S is
linearly dependent if and only if the minors of size m of M are divisors of 0.
That is there is λ such that λµJ = 0 for all subset J of {1, 2, . . . , n} consisting
of m elements.

Proof. Let {e1, e2, . . . , en} be the standard basis of An. For a subset J =
{j1, j2, . . . jm} of {1, 2, . . . , n} we let eJ = ej1 ∧ ej2 · · · ∧ ejm . By [1, Proposi-
tion 12, p. 519], {v1, v2, . . . , vm} is linearly dependent if and only if there is
λ ∈ A such that λv1 ∧ v2 ∧ · · · ∧ vm = 0. But v1 ∧ v2 ∧ · · · ∧ vm =

∑
µJeJ .

Since we know that {eJ}J is linearly independent we see that there is λ ∈ A
such that λv1 ∧ v2 ∧ · · · ∧ vm = 0 if and only if λµJ = 0 for all J . ¤
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Corollary 2.4. Let A be a Noetherian domain and F = An be the free module
of rank n. Then the set of row vectors S = {v1, v2, . . . , vm} (m ≤ n) in F is
linearly dependent if and only if the minors µJ of size m of M vanish.

Let f(X) = Xn+an−1X
n−1+· · ·+a0 and g(X) = Xm+bm−1X

m−1+· · ·+b0
be monic polynomials A[X] with m < n. Consider the submatrix of RL(f, g)
which is the (n+ 1)× (n+m) matrix

RL(f, g) =




0 · · · 1 an−1 · · · · · · a0

1 bm−1 · · · b1 b0 0 0 0
0 1 bm−1 · · · b1 b0 0 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · 1 bm−1 0 · · · b0




consisting of the last n+ 1 rows. For a subset J consisting of n+ 1 elements of
{1, 2, . . . , n+m} let RL(f, g)(J) be the (n+ 1)× (n+ 1) submatrix of RL(f, g)
consisting of the columns RL(f, g)(j) for j ∈ J .

Proposition 2.5. Let A be a Noetherian domain and let f and g be as above.
Then the polynomial f is divisible by the polynomial g of degree m if and only
if the rows of RL(f, g) are linearly dependent.

Proof. By Theorem 2.1, g|f if and only if minors of size bigger than n van-
ish. Since the set of n vectors {R(m+1), R(m+2), . . . , R(m+n)} is linearly inde-
pendent, this is equivalent to that {R(m+1), R(m+2), . . . , R(m+n)} ∪ {R(i)} is
linearly dependent for some i (1 ≤ i ≤ m) by Corollary 2.4. But obviously
R(i) can be replaced by any R(j) (1 ≤ j ≤ m). Hence this is equivalent to
that {R(m+1), R(m+2), . . . , R(m+n)} ∪ {R(m)} is linearly dependent; RL(f, g) is
linearly dependent. ¤

Corollary 2.6. With the same notation as in the proposition, we have g|f if
and only if all minors of RL(f, g) of size n+ 1 vanish.

Now define
µJ (f, gt) = detRL(f, gt)J

which is a polynomial in t0, t1, . . ., tm−1. Sometimes we will abbreviate
µJ(f, gt) = µJ(f,m). There are

(
m+n
n+1

)
such polynomials. We will show that

when A is a Noetherian domain there is a polynomial g(X) ∈ A[X] of degree
m such that g|f if and only if these polynomials have a common zero.

Theorem 2.7. Let A be a Noetherian domain and let f ∈ A[X] be a monic
polynomial. Then the polynomial f has a divisor of degree m if and only
if

(
m+n
n+1

)
polynomials µJ(f,m) have a common solution. If the polynomials

µJ(f,m) have a common solution (t0, t1, . . . , tm−1) = (b0, b1, . . . , bm−1), then
f(X) is divisible by g(X) = Xm + bm−1X

m−1 + · · ·+ b0.

Proof. By Theorem 2.1, g|f if and only if the condition (R) is satisfied. But
by Corollary 2.4, this is equivalent to that n + 1 rows of RL(f, g) are linearly
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dependent. Now this in turn is equivalent to that the determinants of the
submatrices consisting of n+ 1 columns of RL(f, g) vanish. ¤

Corollary 2.8. For a positive integer m (m < n) if there is a subset J of
{1, 2, . . . , n+m} consisting of m elements such that µJ(f,m) has no solution,
then f(X) has no divisor of degree m.

Corollary 2.9. A polynomial f(X) ∈ A[X] of degree n is irreducible if and
only if for each m (m < n) the polynomials µJ(f,m), where J runs over
all subsets of {1, 2, . . . , n + m} consisting of n + 1 elements have no common
solution.

Corollary 2.10. Let K be a field and f, g ∈ K[X] be monic polynomials of
degree n and m respectively with n > m. Then g(X) divides f(X) if and only
if rank(RL(f, g)) = n.

Proof. The condition (R) of Theorem 2.1 is equivalent to the fact that

rank(R(f, g)) ≤ n.

However, the n× n matrix in the low left corner of R(f, g) has nonzero deter-
minant. ¤

Next we will give another point of view of this theorem. Let R(i) be the i-th
row of RL(f, g) (i = 1, 2, . . . , n + 1). Let f(X) = Xn + an−1X

n−1 + · · · + a0

be a monic polynomial. We have a map

Φf : Fm −→
m∧
Fn+m

sending (b0, b1, . . . , bm−1) to
∑

J µJeJ = R(0) ∧R(1) ∧R(2) ∧ · · · ∧R(n), where
µJ = detRL(f, g)(J) is the determinant of the matrix formed by the j-th
columns for j ∈ J which is a subset of {1, 2, . . . , n + m} consisting of n + 1
elements. There are

(
m+n
n+1

)
such terms. Then we can restate Theorem 2.7 as

follows.

Theorem 2.11. Let A be a Noetherian domain. Then a monic polynomial
f(X) ∈ A[X] of degree n has a divisor of degree m if and only if there is
(b0, b1, . . . , bm−1) ∈ Am such that Φf (b0, b1, . . . , bm−1) = 0. ¤

3. Irreducibility of polynomials and Diophantine equations

In this section we find the Diophantine equations for a polynomial f(X)
over a Noetherian domain A whose existence of common solution is equivalent
to the existence of a divisor of f(X) with a certain degree.

For a positive integer m with m < n consider the square matrix of size
(n−m+ 1)
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W (f,m) =




−tm−1 1 0 · · · 0
tm−2 −tm−1 1 0 0 0
−tm−3 tm−2 −tm−1 1 0 0
· · · · · · · · ·

(−1)mt0 · · · · · ·
0

. . . · · · · · ·
... · · · (−1)mt0 · · · tm−2 −tm−1 1 0
0 · · · 0 (−1)mt0 · · · tm−2 −tm−1 1

(−1)n−mam · · · (−1)m+1an−m−1 (−1)man−m · · · an−2 −an−1 1




.

If we adopt the convention tk = 1 when k = m and tk = 0 when k > m, then
the (i, j)-th position of W (f,m) can be written succinctly

(W (f,m))ij =

{
(−1)i−j+1tm+i−j+1 (1 ≤ i ≤ n−m),
(−1)n−jam+j−1 (i = n−m+ 1).

Let Ai (i = 1, 2, . . . , n−m) be the square submatrix of size (n−m−i+2) on
the lower right corner of W (f,m) and let αi = |Ai|. For example, A1 = W (f,m),
A2 is the submatrix obtained by deleting the first row and the first column and
A3 is the submatrix obtained by deleting the first two rows and the first two
columns etc. And lastly An−m =

(
−tm−1 1
−an−1 1

)
.

We have a set of polynomials in t0, . . . , tm−1





w
(f,m)
1 (t0, . . . , tm−1) = a0 − t0|A1|,

w
(f,m)
2 (t0, . . . , tm−1) = a1 − t0|A2| − t1|A1|,

· · · · · ·
w

(f,m)
m−1 (t0, . . . , tm−1) = am−2 − t0|Am−1| − t1|Am−2| − · · · − tm−2|A1|,

w
(f,m)
m (t0, . . . , tm−1) = am−1 − t0|Am| − t1|Am−1| − · · · − tm−1|A1|.

Theorem 3.1. Let A be a Noetherian domain. Let f(X) = Xn +an−1X
n−1 +

· · · + a0 ∈ A[X] and g(X) = Xm + bm−1X
m + · · · + b0 ∈ A[X] with (m < n).

Then f is divisible by g if and only if (b0, b1, . . . , bm−1) is a solution to the
system of equations





w
(f,m)
1 (t0, . . . , tm−1) = 0,

w
(f,m)
2 (t0, . . . , tm−1) = 0,

· · ·
w

(f,m)
m (t0, . . . , tm−1) = 0.

As the proof of the theorem is rather complicated we give an example when
f is a quartic and g is a quadratic.
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Example 3.2. Let f(X) = X4 + a3X
3 + a2X

2 + a1X + a0 ∈ K[X], where K
is a field. Let g(X) = X2 + b1X + b0. Then

RL(f, g) =




0 1 a3 a2 a1 a0

1 b1 b0 0 0 0
0 1 b1 b0 0 0
0 0 1 b1 b0 0
0 0 0 1 b1 b0



.

Now apply elementary row operations to get 0 on the 2,3 and 4-th positions of
the first row and then interchange the rows to get

RL ∼




1 b1 b0 0 0 0
0 1 b1 b0 0 0
0 0 1 b1 b0 0
0 0 0 1 b1 b0
0 0 0 0 w2 w1




(In the fifth row of the last matrix we interchanged w1 and w2 because the
indices work better in that way). Then

{
w1 = a0 − b0(a2 − b0 − b1(a3 − b1)) = a0 − b0α1,

w2 = a1 − b0(a3 − b1)− b1(a2 − b0 − b1(a3 − b1)) = a1 − b0α2 − b1α1,

where {
α2 = a3 − b1,

α1 = a2 − b0 − b1α2.

If we let

W (f,2) =



−t1 1 0
t0 −t1 1
a2 −a3 1


 ,

then α2 = |A2|(b0, b1), and α1 = |A1|(b0, b1). Finally
{
w

(f,2)
1 (t0, t1) = −t0t21 + a3t0t1 + t20 − a2t0 + a0,

w
(f,2)
2 (t0, t1) = −t31 + a3t

2
1 − a2t1 + 2t0t1 − a3t0 + a1.

Hence g(X) = X2 + b1X+ b0 is a divisor of f if and only if (b0, b1) is a solution
to the simultaneous equation w(f,2)

1 (t0, t1) = 0, w(f,2)
2 (t0, t1) = 0.

With this example in mind we give a proof of Theorem 3.1.

Proof. Consider

RL(f, g) =




0 · · · 1 an−1 · · · · · · a0

1 bm−1 · · · b1 b0 0 0 0
0 1 bm−1 · · · b1 b0 0 0
· · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · 1 bm−1 · · · b0



.
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By adding a constant multiple of the rows R(2), R(3), . . . , R(n−m+1) to the first
row successively we obtain a matrix of the form

RL(f, g) ∼




0 · · · 0 0 0 wm · · · w1

1 bm−1 · · · b1 b0 0 0 0
0 1 bm−1 · · · b1 b0 0 0
· · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · 1 bm−1 · · · b0



.

Explicitly add−R(m) toR(1), add−αn−mR(m−1) toR(1) where αn−m = an−1−
bm−1; add −αn−m−1R(m−2) to R(1) where αn−m−1 = an−2−bm−2−bm−1αn−m;
add −αn−m−2R(m−2) to R(1) where αn−m−2 = an−2 − bm−3 − bm−2αn−m −
bm−1αn−m−1 and so on. Then the first n entries of the first row becomes 0 and
the next m positions become

w1 = a0 − t0α1,

w2 = a1 − t0α2 − t1α1,

· · · · · ·
wm−1 = am−2 − b0αm−1 − b1αm−2 − · · · − bm−2α1,

wm = am−1 − b0αm − b1αm−1 − b2αm−2 − · · · − bm−1α1,

where α’s are defined inductively by




αn−m = an−1 − bm−1,

αn−m−1 = an−2 − bm−2 − bm−1αn−m,

αn−m−2 = an−3 − bm−3 − bm−2αn−m − bm−1αn−m−1,

· · · · · ·
αn−2m+1 = an−m − b0 − b1αn−m − b2αn−m−1 − · · · − bm−1αn−2m+2,

αn−2m = an−m−1 − b0αn−m−1 − b1αn−m−2 − · · · − bm−1αn−2m+1,

· · · · · ·
α1 = am − b0αm+1 − · · · − bm−1α2.

Next we need to show that αi = |Ai|(b0, b1, . . . , bm−1). We prove this induc-
tively

αn−m = an−1 − bm−1 =
∣∣∣∣
−bm−1 1
−an−1 1

∣∣∣∣ ,

αn−m−1 = an−2 − bm−2 − bm−1αn−m =

∣∣∣∣∣∣

−bm−1 1 0
bm−2 −bm−1 1
an−2 −an−1 1

∣∣∣∣∣∣
.

Here we expand the determinant according to the first column. In general, by
a suitable change of indices it suffices to show that α1 = |A1|(b0, b1, . . . , bm−1),
that is we need to show:
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α1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−bm−1 1 0 · · · 0
bm−2 −bm−1 1 0 0 0
−bm−3 bm−2 −bm−1 1 0 0
· · · · · · · · ·

(−1)mb0 · · · · · ·
0

. . . · · · · · ·
... · · · (−1)mb0 · · · bm−2 −bm−1 1 0
0 · · · 0 (−1)mb0 · · · bm−2 −bm−1 1

(−1)n−mam · · · (−1)m+1an−m−1 (−1)man−m · · · an−2 −an−1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Expand the determinant according to the first column: Notice that when we
delete the first column and the i-th row the resulting matrix is of the form

∣∣∣∣
L 0
∗ Ai+1

∣∣∣∣ ,

where L is a lower triangular matrix with 1’s on the diagonal. Hence, by
induction

|A1| = −bm−1α2 − bm−2α3 − · · · − b0αm+1 + am. ¤

Remark. If f(X) = Xn + an−1X
n−1 + · · · + a0 and g(X) = X + b0, then

there is only one equation w1(t0) = 0. Now it can be easily checked that
w1(−b0) = f(−b0). Hence g|f if and only if f(−b0) = 0 as it should be.

4. Irreducible quartic polynomials with rational coefficients

In this section we consider polynomials of degree 4 over a field. By using
the results on the structure of rational points on some elliptic curves over Q
we construct infinitely many irreducible quartic polynomials over Q which are
not Einsensteinian.

First we recall some basic definitions of elliptic curves. See [2] for detail. An
elliptic curve is given by a nonsingular homogeneous cubic equation

E : Y 2 + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3,

which is called the Weierstrass equation. It intersects with the line at infinity
only at (0, 1, 0). If Z 6= 0, then we divide the equation by Z3 and let x = X/Z
and y = Y/Z to obtain

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Now let f(X) = X4 + a3X
3 + a2X

2 + a1X + a0, a monic polynomial of
degree 4 with rational coefficients. We know that f has a linear factor if and
only if f(X) has a root in Q which can be tested easily by evaluating at the
possible roots of f .

In Example 3.2, if we replace t1 = y, t0 = x, then we obtain
{
w

(f,2)
1 (x, y) = −xy2 + a3xy + x2 − a2x+ a0,

w
(f,2)
2 (x, y) = −y3 + a3y

2 − a2y + 2xy − a3x+ a1.
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Hence by Theorem 3.1, g(X) = X2 + b1X + b0 is a divisor of f if and only if
(b0, b1) is a solution to the simultaneous equation w(f,2)

1 (x, y) = 0, w(f,2)
2 (x, y) =

0.
We look for the conditions on ai’s for which wi (i = 1, 2) has “no” solution.

Then the quartics f(X) = X4+a3X
3+a2X

2+a1X+a0 will have no quadratic
factor.

The structure or rational points of the elliptic curves

ED : Y 2 = X3 +DX

are relatively well known. And we check whether wi can be reduced in this
form. If the rational points of the elliptic curve corresponding to wi are scarce
and if they happen to be on the line at infinity, then we are able to find a
family of irreducible quartics over Q. We will show that for suitably chosen a’s
the cubic w1 is of the form ED. And when D is a prime which is congruent to
7, 11 modulo 16 then it turns out that the only Q rational point on Ep are the
2-torsion points [2, p. 311].

Theorem 4.1. Let Ep be the elliptic curve over Q defined by

Ep : y2 = x3 + px,

where p ∼= 7, 11 (mod 16). Then the group Ep(Q) of Q-rational point of Ep is
cyclic group of order 2 which is represented by {O, (0, 0)}.

Using this we will construct a ‘family’ of non-Eisensteinian irreducible quar-
tics with rational coefficients. First we construct a family of rational quartics
which do not have a quadratic factor.

Theorem 4.2. Let p be an odd prime such that p ∼= 7, 11 (mod 16). Then the
quartics

f(X) = X4 + a3X
3 +

a2
3

4
X2 + a1X +

1
p3

(a1, a3 ∈ Q)

has no quadratic factor.

Proof. Lets look at w1 : We look for the case when w1 has “no” solution so
that we can get a family of quartics which is irreducible. If there is a solution
(x, y) with x = 0, then a0 = 0; X|f(X), i.e., f is reducible. Hence we may
assume x 6= 0. Homogenizing

W
(f,2)
1 (X,Y, Z) = −XY 2 + a3XY Z +X2Z − a2XZ

2 + a0Z
3.

As X 6= 0 we let y = Y/X and z = Z/X

w1(y, z) = −y2 + a3yz + z − a2z
2 + a0z

3.

Now completing the square

w1(y, z) = −
(
y − a3

2
z
)2

+ z +
(
a2
3

4
− a2

)
z2 + a0z

3.
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If we let t = y − a3
2 z, s = z and letting w1 = 0 yields the equation

t2 = s+ c1s+ c2s
3,

where c1 = (a2
3
4 − a2) and c2 = a0. When c1 = 0 the we are reduced to an

elliptic curve of the form
Y 2 = X3 +DX,

where c2 = a0 = α3
0, α0s = X, t = Y,D = 1

α0
[2, p. 309]. We know the rank and

the torsion part and in some cases the torsion part is Z/2Z and we can find
the 2-torsion points {O, (0, 0)}.

When D is a prime p with p ∼= 7, 11 (mod 16). Then the group Ep(Q)
of Q-rational point of Ep is cyclic group of order 2 which is represented by
{O, (0, 0)}. But the point O corresponds to (X,Y, Z) = (0, 1, 0) which is on
the line at infinity. Now the point (0, 0) corresponds to (X,Y, Z) = (1, 0, 0)
which is also on the line at infinity. Hence these two points do not give the
solution to the equation w1 = 0. ¤

Corollary 4.3. Let p be an odd prime such that p ∼= 7, 11 (mod 16). Then the
quartics

f(X) = X4 + a3X
3 +

a2
3

4
X2 + a1X +

1
p3

(a1 ∈ Z, a3 ∈ 2Z).

If f(±1
pi ) 6= 0 (i = 1, 2, 3), then f is irreducible.

Proof. Multiplying p3 we get a polynomial of the form

h(X) = p3X4 + c3X
3 + c2X

2 + c1X + 1 (ci ∈ Z).

It is well known that if c = r
s (r, s ∈ Z, (r, s) = 1) is a root of g(X), then

r = ±1 and s|p3. Hence our condition f(±1
pi ) 6= 0 (i = 1, 2, 3) guarantees that

f has no root in Q. Now by Theorem 4.2, f has no quadratic factor. Hence f
is irreducible. ¤

5. Quintic polynomials with rational coefficients

We will have nothing much to say about the irreducibility of quintic poly-
nomials. In this section, we simply make some random remarks on various
possibilities for further study.

A monic quintic polynomial f(X) = X5 +a4X
4+a3X

3+a2X
2+a1X+a0 ∈

Q[X] is irreducible if and only if f has no linear and quadratic factor. We can
test whether f has a linear factor since we know how to find the possible root
of f in Q.

To see whether f has a quadratic factor g(X) = X2 + b1X + b0 consider

W (f,2) =




−t1 1 0 0
t0 −t1 1 0
0 t0 −t1 1
−a2 a3 −a4 1


 .
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Then we have

w
(f,2)
1 (t0, t1) = a0 − t0α0

= t31t0 − a4t
2
1t0 − 2t1t20 + a3t1t0 + a4t

2
0 − a2t0 + a0,

w
(f,2)
2 (t0, t1) = a1 − t0α1 − t1α0

= t41 − a4t
3
1 − 3t21t0 + a3t

2
1 + a4t1t0 − a2t1 + t20 − a3t0 + a1.

Letting y = t1, x = t0 we have{
w1(x, y) = y4 − a4y

3 − 3y2x+ a3y
2 + a4yx− a2y + x2 − a3x+ a1,

w2(x, y) = y3x− a4y
2x− 2yx2 + a3yx+ a4x

2 − a2x+ a0.

Hence f |g if and only if wi(b0, b1) = 0 (i = 1, 2).

For example, if a4 = a3 = a2 = 0 and a1 = a0 = 1; f(X) = X5 + X + 1,
then {

w1(x, y) = y4 − 3y2x+ x2 + 1,
w2(x, y) = y3x− 2yx2 + 1.

Now the equations w1 = 0, w2 = 0 have a common solution x = 1, y = 1 say
by inspection. Hence g(X) = X2 +X + 1 divides f(X). In fact, X5 +X + 1 =
(X2 + X + 1)(X3 − X2 + 1). (To get the quotient upon dividing f(X) by
g(X) we can use, of course, the long division of polynomials or we can use
Theorem 4.4 of [3].) And it is a factorization into irreducible polynomials as
can be easily checked.

Question 1. Can we find a family of irreducible quintics as we did for quartics?

Remark. As the degree of wi is 4, we expect the genus of the corresponding
curve is > 1. By Mordell’s Conjecture proved by G. Faltings there ore only
finitely many rational points. Hence we expect there are only finitely many
rational solutions to wi = 0 for each i. The existence or nonexistence of the
common solution to the simultaneous equation wi = 0 (i = 1, 2, . . . ,m) may be
more difficult.
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