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CONSTRUCTION OF A SYMMETRIC SUBDIVISION

SCHEME REPRODUCING POLYNOMIALS

Kwan Pyo Ko

Abstract. In this work, we study on subdivision schemes reproducing
polynomials and build a symmetric subdivision scheme reproducing poly-
nomials of a certain predetermined degree, which is a slight variant of the
family of Deslauries-Dubic interpolatory ones. Related to polynomial re-
production, a necessary and sufficient condition for a subdivision scheme
to reproduce polynomials of degree L was recently established under the
assumption of non-singularity of subdivision schemes. In case of step-
wise polynomial reproduction, we give a characterization for a subdivi-

sion scheme to reproduce stepwise all polynomials of degree ≤ L without
the assumption of non-singularity. This characterization shows that we
can investigate the polynomial reproduction property only by checking
the odd and even masks of the subdivision scheme.

The minimal-support condition being relaxed, we present explicitly
a general formula for the mask of (2n + 4)-point symmetric subdivision
scheme with two parameters that reproduces all polynomials of degree ≤

2n+1. The uniqueness of such a symmetric subdivision scheme is proved,
provided the two parameters are given arbitrarily. By varying the values
of the parameters, this scheme is shown to become various other well
known subdivision schemes, ranging from interpolatory to approximating.

1. Introduction

In this work, we study on subdivision schemes reproducing polynomials and
build a symmetric subdivision scheme reproducing polynomials of a certain
predetermined degree. Subdivision schemes have been a popular way to gen-
erate curves and surfaces in Computer Aided Geometric Design (CAGD). (For
more background on subdivision, we refer to the excellent works [1], [13], and
[23].) Let Z be the integer set and a = {ai}i∈Z a set of constants. A stationary
binary subdivision scheme is a process which recursively defines a sequence of
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control points fk = {fk
i }i∈Z by a rule of the form

fk+1
i =

∑

j∈Z

ai−2jf
k
j , k ∈ {0, 1, 2, . . .},

which is denoted formally by fk+1 = Sfk = Sk+1f0. The set a is called the
mask of the subdivision scheme. In this work, we consider masks of a finite
set of non-zero coefficients a. Then a point of fk+1 is defined by a finite affine
combination of points in fk with two different rules:

fk+1
2i =

∑

j∈Z

a2jf
k
i−j ,

fk+1
2i+1 =

∑

j∈Z

a1+2jf
k
i−j .

A subdivision scheme is said to be uniformly convergent if for every initial
data f0 = {fi}i∈Z, there is a continuous function f ∈ C(R) such that for any
interval [a, b]

lim
k→∞

sup
i∈Z∩2k[a,b]

|fk
i − f(2−ki)| = 0,

and such that f 6≡ 0 for some initial data. In this work, we consider only the
prime parametrization of a subdivision uniformly convergent scheme. (See [12]
for the definitions of prime and dual parametrization of a subdivision scheme.)
We denote the function f by S∞f0, and call it a limit function of S or a
function generated by S. It was shown by Cavaretta et al. [1], Dyn [8], and
Ko et al. [20] that for a convergent binary scheme, the corresponding mask
{ai}i∈Z necessarily satisfies

∑

i∈Z

a2i =
∑

i∈Z

a2i+1 = 1.

Among the criteria for a convergent subdivision scheme S, the polynomial re-
production property is desirable. Sampling an initial data from a given function
f which is smooth enough, the quantity of approximation power is deeply re-
lated to the asymptotic rate of the sequence of approximations obtained at
each step through the subdivision scheme to the original function f. The ap-
proximation power can be measured by the polynomial reproducing property
(see [16], [21] for details): A subdivision scheme S reproduces polynomials of
degree ≤ L (in the limit) if S∞f0 = p for any polynomial p of degree ≤ L and
initial data f0 = p(i), i ∈ Z. In the literature, another notion of polynomial
reproduction is used: A subdivision scheme S with a mask {ai}i∈Z is said to
reproduce polynomials of degree ≤ L in each subdivision step if S reproduces
all polynomials p of degree ≤ L in the sense that for any k ≥ 0, we have

p
( i

2k+1

)

=
∑

j∈Z

ai−2jp
( j

2k

)

, i ∈ Z.
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This is called the stepwise polynomial reproduction, which implies the polyno-
mial reproduction from the following theorem.

Theorem 1.1 (Dyn, Hormann, Sabin, and Shen [12]). Let S be a convergent

subdivision scheme. If S is stepwise polynomial reproducing up to degree L,
then S reproduces all polynomials of degree ≤ L.

And the converse holds for non-singular (or stable) subdivision schemes ([8] and
[12]). A convergent subdivision scheme S is called non-singular if S∞f0 = 0
only when f0 = 0. For more details on the polynomial reproduction property,
we refer to [3], [12], [14], [21], [23]. Recently, Hormann and Sabin [16] derived
the degree of polynomial reproduction for a family of schemes using algebraic
considerations and Dyn et al. [12] generalized the method by establishing a
necessary and sufficient condition for a subdivision scheme to reproduce poly-
nomials of degree L under the assumptions of non-singularity and polynomial
generation. A subdivision scheme S with mask {ai}i∈Z is said to generate poly-
nomials of degree ≤ M if for any polynomial p of degree ≤ M, there exists an
initial data f0 such that

S∞f0 = p.

They showed that a non-singular subdivision scheme with mask {ai}i∈Z gen-
erating polynomials of degree ≤ M reproduces all polynomials up to degree
L(≤ M) if and only if for the corresponding Laurent polynomial a(z) given as
a symbol a(z) =

∑

i∈Z
aiz

i,

a(z)− 2 is divisible by (1 − z)L+1.

Conti and Hormann [3] extended the result for a non-singular subdivision
scheme and derived a unified condition for polynomial reproduction that cov-
ers symmetric and non-symmetric schemes and applies to m-ary subdivision
schemes (also see [15]).

In this paper, we characterize the stepwise polynomial reproduction property
of a subdivision scheme S. We show that a subdivision scheme S with mask
{ai}i∈Z reproduces all polynomials of degree ≤ L in each step if and only if
for the corresponding Laurent polynomials aodd(z) :=

∑

k∈Z
a2k+1z

2k+1 and

aeven(z) =
∑

k∈Z
a2kz

2k,

aodd(z)− 1 and aeven(z)− 1 are divisible by (1− z)L+1.

This characterization shows that even though the polynomial generation as-
sumption is unavoidable, we can check the polynomial reproduction property
only by estimating the factorizations of the Laurent polynomials aeven(z) − 1
and aodd(z) − 1 related to the even and odd mask coefficients respectively,
without checking the non-singularity or stability of the subdivision scheme be-
forehand (Theorem 2.8). Due to half the amount of the mask coefficients, the
factorizations of aeven(z)−1 and aodd(z)−1 are much easier than those of a(z)
and a(z) − 2. From (iii) of Lemma 2.7, we remark that the characterization
can be obtained by combining Theorems 3.2 and 4.6 in [12].
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Deslauriers and Dubuc [4] derived a (2n+2)-interpolatory subdivision scheme
of minimal support reproducing all polynomials of degree ≤ 2n+ 1 (hereafter
referred to as DD). By taking a convex combination of the two DD schemes,
Dyn [9] reconstructed the Dyn, Gregory and Levin (DGL) 4-point [10] and the
Weissman 6-point schemes with a tension parameter [24].

The minimal-support condition being relaxed, we obtain a (2n + 4)-point
symmetric subdivision scheme reproducing all polynomials of degree ≤ 2n+1.
We also prove that a symmetric subdivision scheme with mask {ak}

2n+3
k=−2n−3

reproducing polynomials of degree ≤ 2n + 1 in each step is unique, provided
that a2n+3 and a2n+2 are given arbitrarily (see Theorem 2.3). The unique-
ness of such a scheme verifies that the proposed subdivision scheme can be
obtained by an affine combination with two parameters of the three subdivi-
sion schemes with Laurent polynomials ann+1(z), a

n
n+2(z), and ann+3(z) given in

[12]. These schemes were introduced by Dong and Shen [5], and they and Dyn
et al. investigated the properties of these schemes in [6, 7] and [12].

At the cost of relaxing the minimal support, that is, with the appearance of
two free parameters, these schemes generalize well-known many other subdi-
vision schemes ranging from interpolatory to approximating such as the DGL
4-point, the Weissman 6-point schemes, the (2n + 4)-interpolatory symmetric
scheme with a parameter, and the (2n + 2), (2n + 4) DD schemes as well as
cubic and 6-th order B-splines. We can obtain also the mask of the subdivision
scheme proposed Choi et al. [2], who did not get the explicit formulation for
the masks. Despite the proposed scheme is involved in two parameters, no at-
tempt has been made here to look into any practical impact in computer aided
geometric design because this topic exceeds the scope of this paper.

This paper is organized as follows. In Section 2, we obtain a general rule for
the construction of the mask of (2n+ 4)-point symmetric subdivision schemes
reproducing all polynomials of degree ≤ 2n+ 1. Then, we present an explicit
formulation of the longer masks of a (2n + 4)-point symmetric subdivision
schemes in terms of two parameters. Also we give a factorization of the Lau-
rent polynomial, through which we can estimate proper properties such as
smoothness,polynomial reproduction, and so on. In the section, we give a
characterization for a subdivision scheme to reproduce stepwise polynomials of
degree ≤ L. With numerical performances, we provide numerical illustrations
which show the convergence and smoothness of the proposed scheme for two
special cases in Section 3.

2. Construction of the polynomial reproducing mask

The derivation in this section is based on the work done by de Villiers,
Goosen and Herbst [22] and [19]. We denote by P2n+1 the space of all poly-
nomials of degree ≤ 2n+ 1 for a nonnegative integer n. In our argument, the
Lagrange fundamental polynomials {Lk(x)}

n+1
k=−n corresponding to the nodes

{k}n+1
k=−n play quite an important role. We define the Lagrange fundamental
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polynomials {Lk(x)}
n+1
k=−n by

(1) Lk(x) =

n+1
∏

j 6=k,j=−n

x− j

k − j
, k = −n, . . . , n+ 1,

for which

(2) Lk(j) = δk,j , k, j = −n, . . . , n+ 1,

and

(3)

n+1
∑

k=−n

p(k)Lk(x) = p(x), p ∈ P2n+1.

Then it is easy to see that for each j = −n− 1, . . . , n,

L−j

(1

2

)

= (−1)j
(n+ 1)

24n+1(2j + 1)

(

2n+ 1

n

)(

2n+ 1

n+ j + 1

)

,(4)

L−j(n+ 2) = (−1)j+n+1 (2n+ 2)!

(n− j)!(n+ j + 1)!(n+ j + 2)
,(5)

L−j(−n− 1) = (−1)j+n (2n+ 2)!

(n− j)!(n+ j + 1)!(n− j + 1)
,(6)

and

(7) L−j(n+2)+L−j(−n− 1) = (−1)j+n

(

2n+ 1

n+ j + 1

)

(2n+ 2)(2j + 1)

(n+ j + 2)(n− j + 1)
.

These quantities are crucial to find the explicit form of masks considered in the
following process.

We consider the problem of finding symmetric masks a = {aj}
2n+3
j=−2n−3 re-

producing polynomials of degree ≤ 2n+ 1 in each step, that is

(8)
∑

k∈Z

aj−2kp(k) = p
( j

2

)

, j ∈ Z, p ∈ P2n+1.

Throughout this section, we let v = a2n+2 and w = a2n+3, for convenience’s
sake. Setting j = 0 in (8), and using (2) and (3), we obtain from (8)

(9)
n+1
∑

k=−n−1

a−2kL−j(k) = δj,0, j = −n− 1, . . . , n.

We split the summation on the left-hand side of the equation (9) as

n+1
∑

k=−n−1

a−2kL−j(k) =

n+1
∑

k=−n

a−2kL−j(k) + a2n+2L−j(−n− 1)

= a2j + a2n+2L−j(−n− 1).
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Thus substituting (6) into the above equation gives the explicit form of a2j for
j = −n− 1, . . . , n,

a2j = δj,0 − vL−j(−n− 1)

= δj,0 + (−1)j+n+1v
(2n+ 2)!

(n− j)!(n+ j + 1)!(n− j + 1)
(10)

= δj,0 + (−1)j+n+1

(

2n+ 2

n+ j + 1

)

v.

Also setting j = 1 in (8), we get

(11)

n+2
∑

k=−n−1

a1−2kL−j(k) = L−j

(1

2

)

, j = −n− 1, . . . , n.

We split the summation on the left-hand side of the equation (11) as

n+2
∑

k=−n−1

a1−2kL−j(k) =

n+1
∑

k=−n

a1−2kL−j(k)

+ a2n+3[L−j(n+ 2) + L−j(−n− 1)].

By applying the relation (2), we get

n+2
∑

k=−n−1

a1−2kL−j(k) = a1+2j + w[L−j(n+ 2) + L−j(−n− 1)].

Using the identities (4)-(7), we have the explicit form for a2j+1

a2j+1 = L−j

(1

2

)

− w[L−j(n+ 2) + L−j(−n− 1)]

=
n+ 1

24n+1

(

2n+ 1

n

)

(−1)j

2j + 1

(

2n+ 1

n+ j + 1

)

(12)

+ (−1)j+n+1w

(

2n+ 1

n+ j + 1

)

(2n+ 2)(2j + 1)

(n+ j + 2)(n− j + 1)

for j = −n− 1, . . . , n.
It is easy to see that the mask {aj}

2n+3
j=−2n−3 with a2j as given in (10) and

a2j+1 as given in (12) satisfies the conditions of symmetry and the proposed
scheme satisfies the polynomial reproducing property up to degree 2n + 1,
because this property is the starting point of the construction of the mask as
formulated in (8).

Note that by applying p(x) = 1 to the relation (8), we have the identity
∑

j∈Z

a2j =
∑

j∈Z

a2j+1 = 1.

And we take the value of the parameter v as v = 0, the proposed scheme
becomes the (2n + 4)-point interpolatory symmetric subdivision scheme, and
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when v = w = 0, it becomes the well-known (2n+ 2)-DD scheme [22] of which

the mask, denoted by {aDD,2n+2
2i+1 }, is given as

(13) aDD,2n+2
2i+1 =

n+ 1

24n+1

(

2n+ 1

n

)

(−1)i

2i+ 1

(

2n+ 1

n+ i+ 1

)

, i = −n− 1, . . . , n.

In general, it is not an interpolatory scheme if v 6= 0 since, in this case, we
have

a2j 6= δj,0.

In summary, we have the following theorem:

Theorem 2.1 ([19]). For each integer n ≥ 0, define the symmetric subdivision

scheme with a mask {aj}
2n+3
j=−2n−3 given as a2n+2 = a−2n−2 = v, a2n+3 =

a−2n−3 = w, and

(14) a2j = δj,0 + (−1)j+n+1

(

2n+ 2

n+ j + 1

)

v, for j = −n . . . , n,

and for j = −n− 1,−n, . . . , n,

a2j+1 =
n+ 1

24n+1

(

2n+ 1

n

)

(−1)j

2j + 1

(

2n+ 1

n+ j + 1

)

(15)

+ (−1)j+n+1

(

2n+ 1

n+ j + 1

)

(2n+ 2)(2j + 1)

(n+ j + 2)(n− j + 1)
w.

Then the subdivision scheme has the properties:

(i) the scheme reproduces all polynomials of degree ≤ 2n+ 1.
(ii) In case when v = 0, it becomes a (2n+4)-point interpolatory symmetric

subdivision scheme (ISSS) with one parameter.

(iii) In case when v = 0 and w = wn, where

(16) wn = (−1)n+1 (n+ 2)

24n+5(2n+ 3)

(

2n+ 3

n+ 1

)

,

it becomes the (2n+4)-point DD scheme so that it reproduces all poly-

nomials of degree ≤ 2n+ 3.
(iv) In case when v = w = 0, it becomes the (2n+ 2)-point DD scheme.

Proof. We have only to show (iii). For the two parameters, we take the specific
values as v = 0 and w given in (16). In this case, it is easy to see that

a2n+3 = aDD,2n+4
2n+3 and for i = 0, 1, . . . , n,

a2i+1 = aDD,2n+2
2i+1 + (−1)i+n+1w

(

2n+ 1

n+ i+ 1

)

(2n+ 2)(2i+ 1)

(n+ i+ 2)(n− i+ 1)

=
n+ 1

24n+1

(

2n+ 1

n

)

(−1)i

2i+ 1

(

2n+ 1

n+ i+ 1

)

+
n+ 2

24n+5

(

2n+ 3

n+ 1

)

1

2n+ 3
(−1)i

(

2n+ 1

n+ i+ 1

)

(2n+ 2)(2i+ 1)

(n+ i+ 2)(n− i+ 1)
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=
n+ 2

24n+5

(

2n+ 3

n+ 1

)

(−1)i

2i+ 1

(

2n+ 3

n+ i+ 2

)

= aDD,2n+4
2i+1 .

Then, the symmetry of the mask verifies that the (2n+4)-point (interpolatory
symmetric) subdivision scheme becomes the (2n + 4)-point DD scheme. And
the (2n + 4)-point DD scheme reproduces all polynomials of degree 2n + 3,
which completes the proof. �

Remark 2.2. Choi et al. [2] presented a new class of subdivision schemes unify-
ing not only the 4-point DD scheme but also the quadratic and cubic B-spline
schemes. They proved the convergence, smoothness and approximation or-
der. But they did not get the explicit formulation for the masks. Instead,
they proposed the forms of the masks {bj}

L
j=−L of the subdivision schemes for

L = 1, 2, . . . , 10. With the mask given in Theorem 2.1 for w = 0, we can obtain
the mask of the subdivision scheme which they proposed (L is even).

Theorem 2.3. There exists a unique symmetric subdivision scheme with mask

{aj}
2n+3
j=−2n−3 reproducing stepwise all polynomials of degree ≤ 2n+ 1, provided

that a2n+3 and a2n+2 are given arbitrarily.

Proof. We claim that if a symmetric subdivision scheme with mask {aj}
2n+1
j=−2n−1

is stepwise polynomial reproducing up to degree 2n+ 1, that is,

(17)
∑

k∈Z

aj−2kp(k) = 0, j ∈ Z, p ∈ P2n+1,

then aj = 0 for all j = −2n + 1, . . . , 2n + 1. Indeed, it is easily seen that
substituting p(x) = xℓ, ℓ = 1, . . . , 2n+ 1, into equation (17) and applying the
non-singularity of the Vandermonde matrix shows the claim, which prove the
theorem. �

We notice that we can see in the proof that such a subdivision scheme is also
unique, provided that any two mask coefficients a2i and a2j+1 with different

parities of {ak}
2n+3
k=−2n−3 are arbitrarily given.

To investigate useful properties of a subdivision scheme S with mask {ai}i∈Z,
we use the so-called Laurent polynomial (or symbol)

a(z) =
∑

i∈Z

aiz
i.

Remark 2.4. Theorem 2.3 shows that by suitable choices of v and w, the sym-
metric subdivision scheme constructed in Theorem 2.1 induces the schemes
mentioned in Theorem 2.1 and Remark 2.2. Also, we can see that the proposed
subdivision scheme is an affine combination of the three subdivision schemes
with Laurent polynomials ann+1(z), a

n
n+2(z), and ann+3(z) given in [7] and [12]

(see also [5] and [6]).
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With the Laurent polynomial, Dyn et al. [12] established the following the-
orem for the polynomial reproduction property of a subdivision scheme under
the assumptions of polynomial generation and non-singularity.

Theorem 2.5. Let S be a non-singular subdivision scheme with mask {ai}i∈Z

that generates polynomials of degree ≤ M. Then S reproduces polynomials up

to degree L (≤ M) if and only if for its Laurent polynomial a(z), a(z) − 2 is

divisible by (1 − z)L+1.

Proof. See Theorem 4.6 in [12] (and Theorem 1.1 also). �

For an integer n ≥ 0, let S be the proposed scheme with mask {aj}
2n+3
j=−2n−3

given as a2n+2 = a−2n−2 = v, a2n+3 = a−2n−3 = w, and

(18) a2j = δj,0 + (−1)j+n+1

(

2n+ 2

n+ j + 1

)

v for j = −n . . . , n,

and for j = −n− 1,−n, . . . , n,

a2j+1 = aDD,2n+2
2j+1 + (−1)j+n+1

(

2n+ 1

n+ j + 1

)

(2n+ 2)(2j + 1)

(n+ j + 2)(n− j + 1)
w

= aDD,2n+2
2j+1 + (−1)j+n+1

(

2n+ 3

n+ j + 2

)

(2j + 1)

(2n+ 3)
w,(19)

where aDD,2n+2
2j+1 are given as in (13). The Laurent polynomial a(z) is decom-

posed into three parts,

a(z) = aDD,2n+2(z) + vaeven(z) + waodd(z),

where aDD,2n+2(z) is the Laurent polynomials corresponding to the (2n+ 2)-
DD scheme,

aDD,2n+2(z) =

n
∑

j=−n−1

aDD,2n+2
2j+1 z2i+1 + 1,

and aeven(z) and aodd(z) are given as

aeven(z) =

n+1
∑

j=−n−1

(−1)j+n+1

(

2n+ 2

n+ j + 1

)

z2j,

aodd(z) =
n+1
∑

j=−n−2

(−1)j+n+1

(

2n+ 3

n+ j + 2

)

(2j + 1)

(2n+ 3)
z2j+1.

We simplify aeven(z) as

aeven(z) = z−2n−2
n+1
∑

j=−n−1

(−1)j+n+1

(

2n+ 2

n+ j + 1

)

z2n+2j+2

= z−2n−2
2n+2
∑

j=0

(−1)j
(

2n+ 2

j

)

z2j
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= z−2n−2(1 − z2)2n+2.

To simplify aodd(z), we split the summation into two parts as

aodd(z) =

n+1
∑

j=−n−2

(−1)j+n+1

(

2n+ 3

n+ j + 2

)

(2j + 1)

(2n+ 3)
z2j+1

= z−2n−3
2n+3
∑

j=0

(−1)j+1

(

2n+ 3

j

)

(2j − 2n− 3)

(2n+ 3)
z2j

= z−2n−3
(

(1− z2)2n+3 −
2

2n+ 3

2n+3
∑

j=0

(−1)jj

(

2n+ 3

j

)

z2j
)

.

On the other hand, we can simplify the last summation as follows.

2n+3
∑

j=0

(−1)jj

(

2n+ 3

j

)

z2j = z

2n+3
∑

j=0

(−1)jj

(

2n+ 3

j

)

z2j−1

=
z

2

d

dz

(

2n+3
∑

j=0

(−1)j
(

2n+ 3

j

)

z2j
)

=
z

2

d

dz

(

(1− z2)2n+3
)

= −(2n+ 3)z2(1 − z2)2n+2.

That is, we have obtained the factorization

−
2

2n+ 3

2n+3
∑

j=0

(−1)jj

(

2n+ 3

j

)

z2j = 2z2(1− z2)2n+2.

Thus, aodd(z) is simplified as

aodd(z) = z−2n−3(1− z2)2n+2(1 + z2).

Combining these simplifications, we express a(z) as

a(z) = aDD,2n+2(z) + z−2n−3(1− z2)2n+2
(

w + vz + wz2
)

.(20)

Since the (2n+2)-point DD scheme reproduces polynomials of degree ≤ 2n+1,
Theorem 2.5 implies that the Laurent polynomial aDD,2n+2(z) − 2 is divided
by (1− z)2n+2. From (20), we show that a(z)− 2 is (1− z)2n+2, which accords
with Theorem 2.5.

As given in Theorem 2.5, Dyn et al. [12] found a necessary and sufficient con-
dition under the assumptions of non-singularity and polynomial generation. In
the following lemmas, however, we shall show that even though the polynomial
generation assumption is unavoidable, the equivalence relation holds without
the assumption of non-singularity (and of continuity as well).

Lemma 2.6. Let Sb be a subdivision scheme with mask {bi}i∈Z and b(z) its

Laurent polynomial. Then the following holds.
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(i) b(z) is divisible by (1 − z)L+1 if and only if

b(z)p(z) = 0, p ∈ PL,

where p(z) =
∑

i∈Z
p(i)zi;

(ii) or, equivalently, b(z) is divisible by (1 + z)L+1 if and only if

b(z)p(−z) = 0, p ∈ PL.

Proof. The equivalence of (i) and (ii) is straightforward. And the claim (i)
comes from Lemma 4.2 in [12]. �

Now, we are to characterize a subdivision scheme having the stepwise poly-
nomial reproduction property. Assume that Sb is a subdivision scheme with a
finite set of mask {bi}i∈Z reproducing polynomials of degree ≤ L in each step.
Let bodd(z), beven(z) be the Laurents polynomials defined by

(21) bodd(z) =
∑

k∈Z

b2k+1z
2k+1 and beven(z) =

∑

k∈Z

b2kz
2k.

Then we can see that for any polynomial p(x) ∈ PL,

p
(2j + 1

2ℓ+1

)

=
∑

k∈Z

b2j−2k+1p
( k

2ℓ
)

, j ∈ Z and ℓ = 0, 1, . . . .

That is, the (interpolatory) subdivision Sodd with mask {b̃k}k∈Z given as

b̃2k+1 = b2k+1 and b̃2k = δk,0, k ∈ Z

also reproduces stepwise all polynomials of degree ≤ L. In this case, Theorem
2.5 implies that the corresponding Laurent polynomial b̃(z)−2 as well as b(z)−2
is divisible by (1 − z)L+1. On the other hand, we have the relation between

bodd(z) and b̃(z) as

b̃(z) = bodd(z) + 1.

Thus, we obtain that beven(z) − 1 = b(z) − 2 −
(

bodd(z) − 1
)

is divisible by

(1 − z)L+1. Consequently, we obtain that if a subdivision scheme Sb has the
stepwise polynomial reproduction property of degree ≤ L, then bodd(z) − 1
and beven(z) − 1 are divisible by (1 − z)L+1. Furthermore, we shall show that
the opposite statement holds also. Before we characterize such subdivision
schemes, we need the following lemma:

Lemma 2.7. For an integer L ≥ 0, let Sb be a subdivision scheme with a

finite set of mask {bi}i∈Z. And let bodd(z), beven(z) be the Laurents polynomials

defined as in (21) Then the following statements are all equivalent:

(i) bodd(z)− 1 and beven(z)− 1 are divisible by (1 − z)L+1;
(ii) bodd(z) + 1 and beven(z)− 1 are divisible by (1 + z)L+1;
(iii) b(z) and b(z)−2 are divisible by (1+z)L+1 and (1−z)L+1, respectively.
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Proof. The proof is straightforward. By writing b(z) and b(z)− 2 as

b(z) = bodd(z) + 1 + beven(z)− 1 and b(z)− 2 = bodd(z)− 1 + beven(z)− 1

and replacing z with −z, we can show these equivalences. �

Now, we are ready to characterize the stepwise polynomial reproduction
property of a subdivision scheme. We can see that the following characteriza-
tion holds without the non-singularity assumption of a subdivision scheme.

Theorem 2.8. For an integer L ≥ 0, let Sb be a subdivision scheme with a

finite set of mask {bi}i∈Z. And let bodd(z), beven(z) be the Laurents polynomials

defined by

bodd(z) =
∑

k∈Z

b2k+1z
2k+1 and beven(z) =

∑

k∈Z

b2kz
2k.

Then the mask {bi}i∈Z satisfies the polynomial reproduction property of degree

L,

(22)
∑

k∈Z

bj−2kp(k) = p
( j

2

)

, j ∈ Z, p ∈ PL,

if and only if the identities

(23)
∑

k∈Z

b2k+1 =
∑

k∈Z

b2k = 1

hold, and bodd(z)− 1 and beven(z)− 1 are divisible by (1 − z)L+1.

Proof. Assume that the mask {bi}i∈Z satisfies the polynomial reproduction
property (22). Substituting p(x) = 1 into (22), we obtain the identities (23).
To prove that bodd(z) − 1 and beven(z) − 1 are divisible by (1 − z)L+1, it is
sufficient to show that for each i = 0, . . . , L, the Laurent polynomials bodd(z)
and beven(z) satisfy

b
(i)
odd(1) = δi,0 and b(i)even(1) = δi,0,

where b(i)(z) denotes the i-th derivative di

dzi b(z) and δ is the Kronecker delta
function. From (23), we have directly that

bodd(1) = 1 and beven(1) = 1,

and it remains to show that

b
(i)
odd(1) = 0 and b(i)even(1) = 0, i = 1, . . . , L.

For our argument, we define polynomials pℓ(x) of degree ℓ by

pℓ(x) = (−2x+ 1)(−2x)(−2x− 1) · · · (−2x− ℓ+ 2), ℓ = 1, . . . , L.

Then for each ℓ = 1, . . . , L, we can see that

b
(ℓ)
odd(1) =

∑

k∈Z

a1−2kpℓ(k).
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Since pℓ is a polynomial of degree ≤ L, we have from (22) that

∑

k∈Z

a1−2kpℓ(k) = pℓ
(1

2

)

.

On the other hand, the definition of pℓ verifies that pℓ(
1
2 ) = 0, which shows

b(ℓ)(1) = 0. To show that b
(ℓ)
even(1) = 0 for each ℓ = 1, . . . , L, we apply the same

argument to polynomials qℓ(x) of degree ℓ defined by

qℓ(x) = 2x(2x− 1) · · · (2x− ℓ+ 1), ℓ = 1, . . . , L,

and we obtain from (22) that for each i = 0, . . . , L, b
(i)
even(1) = δi,0, which shows

that bodd(z)− 1 and beven(z)− 1 are divisible by (1− z)L+1.
Now we assume that the mask {bi}i∈Z satisfies the identities (23) and bodd(z)

−1 and beven(z) − 1 are divisible by (1 − z)L+1. Then from Lemma 2.7, the
Laurent polynomial b(z) given as

b(z) =
∑

i∈Z

biz
i = beven(z) + bodd(z)

is divisible by (1 + z)L+1 and b(z) − 2 is divisible by (1 − z)L+1. Let p ∈ PL

be a polynomial of degree ≤ L and let f1 = {f1
j }j∈Z be the refined data from

f0 = {f0
j }j∈Z with f0

j = p(j) given by

f1
j =

∑

k∈Z

bj−2kp(k), j ∈ Z.

Also, let q = {qi}i∈Z with qi = p( i2 ). Since the refinement relation induces the
identity

f1(z) = b(z)f0(z2),

the corresponding Laurent polynomials satisfy the identities

f1(z) = b(z)f0(z2) =
1

2
(b(z)q(z) + b(z)q(−z)) =

1

2
b(z)q(z).

Here we used the identity q(z)+ q(−z) = 2f0(z2) and we applied the condition
(ii) of Lemma 2.6 to obtain the equation b(z)q(−z) = 0. On the other hand,
since b(z)− 2 is divisible by (1− z)L+1, we obtain from (i) of Lemma 2.6 that

(b(z)− 2)q(z) = 0 or b(z)q(z) = 2q(z),

for q(z) is stemmed from the polynomial q(x) = p(x2 ) of degree ≤ L. Conse-
quently, we obtain the equation

f1(z) = q(z).

Identifying the coefficients, we conclude that we have

f1(j) = q(j), j ∈ Z,
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that is, the mask satisfies the polynomial reproduction property of degree L,

∑

k∈Z

bj−2kp(k) = p
( j

2

)

, j ∈ Z, p ∈ PL.

This completes the proof. �

In the following example, we list the masks of the proposed scheme for
n = 0, 1, 2.

Examples ([19, Example 1]).

• For n = 0, we have the mask of non-interpolatory scheme:
[

w, v,
1

2
− w, 1− 2v,

1

2
− w, v, w

]

.

In case when v = 0, it becomes the DGL 4-point scheme:
[

w, 0,
1

2
− w, 1,

1

2
− w, 0, w

]

.

When we set w = 0, we get the same mask as Choi et al. [2] proposed:
[

v,
1

2
, 1− 2v,

1

2
, v
]

.

If we set v = 1/8, this scheme becomes the cubic B-spline subdivision
scheme:

[1

8
,
1

2
,
3

4
,
1

2
,
1

8

]

.

Also, when we set v = 3/16, w = 1/32, the proposed scheme becomes
the 6-th order B-spline subdivision scheme:

[ 1

32
,

6

32
,
15

32
,
20

32
,
15

32
,

6

32
,

1

32

]

.

• For n = 1, we get the scheme:
[

w, v,−
1

16
− 3w,−4v,

9

16
+ 2w, 1 + 6v,

9

16
+ 2w,−4v,−

1

16
− 3w, v, w

]

.

In case when v = 0, it becomes the 6-point Weissman scheme:
[

w, 0,−
1

16
− 3w, 0,

9

16
+ 2w, 1,

9

16
+ 2w, 0,−

1

16
− 3w, 0, w

]

.

In the case of v = w = 0, it becomes the 4-point DD scheme:
[

−
1

16
, 0,

9

16
, 1,

9

16
, 0, −

1

16

]

.

• For n = 2, we obtain the scheme:
[

. . . , 1− 20v,
75

128
− 5w, 15v, −

25

256
+ 9w, −6v,

3

256
− 5w, v, w

]

,
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where only the masks {ai}
8
i=0 are given and the others are obtained

from the symmetry of the mask. In case when v = 0, it becomes the
8-point ISSS:
[

. . . , 1,
75

128
− 5w, 0, −

25

256
+ 9w, 0,

3

256
− 5w, 0, w

]

.

In the case of v = w = 0, it becomes the 6-point DD scheme:
[ 3

256
, 0, −

25

256
, 0,

75

128
, 1,

75

128
, 0, −

25

256
, 0,

3

256

]

.

3. Analysis of the proposed schemes

The proposed subdivision schemes in this work have two free parameters. In
this section, we illustrate the performance of the subdivision scheme with a
mask given as in (10) and (12). In this section, we analyse the smoothness
of the proposed scheme for the two special cases when n = 0 and n = 1. By
choosing appropriate values for two parameters, the proposed scheme provides
up to C4-smoothness and satisfies the sum rule of order 6. In the univariate
case, a mask {ai}i∈Z is said to satisfy the sum rules of order k if

(24)
∑

j∈Z

(2j)ma2j =
∑

j∈Z

(2j + 1)ma2j+1, m = 0, 1, . . . , k − 1.

We also present some numerical examples by setting the free parameters to
various values.

In a convergent subdivision scheme, the corresponding mask {ai}i∈Z neces-
sarily satisfies the condition

(25)
∑

i∈Z

a2i =
∑

i∈Z

a2i+1 = 1.

Dyn [8] provided a sufficient and necessary condition for a uniformly convergent
subdivision scheme: For a subdivision scheme S, S is uniformly convergent if
and only if there is an integer L ≥ 1, such that

∣

∣

∣

∣(12S1)
L
∣

∣

∣

∣

∞
< 1,

where S1 is the subdivision scheme associated with the mask q, where a(z) =
(1+z

2 )q(z) and satisfying

dfk = S1df
k−1, k = 1, 2, . . . ,

for the control points fk = Skf0 and dfk = {(dfk)i = 2k(fk
i+1 − fk

i )}i∈Z, and
the norm ||S||∞ of a subdivision scheme S with a mask {ai}i∈Z is defined by

||S||∞ = max

{

∑

i∈Z

|a2i|,
∑

i∈Z

|a2i+1|

}

.

By the linearity, the smoothness of the limit function S∞f0 for a given sequence
f0 of control points is equivalent to that of ϕ = S∞δ, δ = {δn,0}n∈Z. The
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function ϕ is called the basic limit function of a subdivision scheme. Note that
when v = 0, this scheme becomes interpolatory.

We say that a subdivision scheme is Cm if for the data δn,0 the basic limit
function has continuous derivatives up to order m. The following theorem is
available to check the smoothness of the subdivision scheme.

Theorem 3.1 ([8], [11]). Consider a subdivision scheme S with symbol

a(z) =
(1 + z

2z

)m
am(z).

If the subdivision scheme Sm corresponding to am(z) converges uniformly, then

S is Cm.

Based on Theorem 3.1, we investigate the smoothness range of the two free
parameters v and w for the proposed 4-point and 6-point subdivision schemes.

3.1. The proposed 4-point subdivision schemes [19]

For the proposed 4-point (n = 0) subdivision scheme with a mask

a(z) = wz−3 + vz−2 + (12 − w)z−1 + (1− 2v) + (12 − w)z + vz2 + wz3,

we have the mask of subdivision scheme S1

a1(z) = 2[wz−2 + (v − w)z−1 + (12 − v) + (12 − v)z + (v − w)z2 + wz3],

where a1(z) = 2z
1+z

a(z). It is easy to verify that a(z) and a1(z) satisfy the

necessary condition (25) for the convergence of S and S1. If
∥

∥

∥

1

2
S1

∥

∥

∥

∞
= |w|+ | 12 − v|+ |v − w| < 1,

then this scheme converges to a continuous limit function. We have the mask
of scheme S2 by using the relation a2(z) =

2z
1+z

a1(z):

a2(z) = 4[wz−1 + (v − 2w) + (12 − 2v + 2w)z + (v − 2w)z2 + wz3].

If
∥

∥

∥

1

2
S2

∥

∥

∥

∞
= max{4|w|+ 2| 12 − 2v + 2w|, 4|v − 2w|} < 1,

then this scheme is C1(R).
For C2 continuity, a2(z) should satisfy the necessary condition (25). This

implies

w =
v

2
−

1

16
.

From the relation a3(z) =
2z
1+z

a2(z), we have the mask of scheme S3:

a3(z) = 8[(v2 − 1
16 ) + (− v

2 + 3
16 )z + (− v

2 + 3
16 )z

2 + (v2 − 1
16 )z

3],

and
∥

∥

∥

1

2
S3

∥

∥

∥

∞
= 2|v − 1

8 |+ 2| 38 − v| < 1,
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which implies that 0 < v < 1
2 . Hence for the case w = v

2 − 1
16 and 0 < v < 1

2 ,

this scheme is C2(R).
For C3 continuity, a3(z) should satisfy the necessary condition (25), which

is always true. The mask of S4 is

a4(z) = 16[(v2 − 1
16 )z + (−v + 1

4 )z
2 + (v2 − 1

16 )z
3],

and
∥

∥

∥

1

2
S4

∥

∥

∥

∞
= max{16| v2 − 1

16 |, 8| − v + 1
4 |} < 1,

which implies that 1
8 < v < 3

8 . This scheme is C3(R) in case w = v
2 − 1

16 and
1
8 < v < 3

8 . From the fact that a4(z) should satisfy the necessary condition

(25) for C4 continuity, we get

v =
3

16
, w =

1

32
,

and we have the mask of scheme S5

a5(z) = z2 + z3,

and
∥

∥

∥

1

2
S5

∥

∥

∥

∞
=

1

2
.

Hence this scheme is C4(R).
It is well-known ([8]) that for a given finite mask a, in the univariate case,

the basic limit function ϕ satisfies the refinement equation

ϕ =
∑

j∈Z

ajϕ(2 · −j).

We can verify the accuracy of the function ϕ in terms of the sum rules associated
with the mask. We say that ϕ has accuracy k if the linear space

S(ϕ) = {ϕ ∗′ b : b ∈ l(Z)},

contains the polynomial space Pk−1. Here the semi-convolution ϕ ∗′ b is the
sum defined by

ϕ ∗′ b =
∑

i∈Z

ϕ(· − i)b(i).

If the mask a satisfies the sum rules of order k in (24),
∑

j∈Z

(2j)ma2j =
∑

j∈Z

(2j + 1)ma2j+1, m = 0, 1, . . . , k − 1,

then it was proved in [17] (also see [18]) that ϕ has accuracy k.
For the proposed 4-point (n = 0) subdivision scheme with a mask

a(z) = wz−3 + vz−2 + (12 − w)z−1 + (1− 2v) + (12 − w)z + vz2 + wz3,

we can easily get the fact that in case w = v/2−1/16, the mask of the proposed
scheme has the sum rules of order 4. And for v = 3/16 and w = 1/32, it has
sum rules of order 6.
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Table 1. By computing ||(12Sm)10||∞ < 1,m = 1, 2, 3, 4, 5,
for the proposed 4-point (n = 0) subdivision scheme S with
mask [w, v, 1/2−w, 1−2v, 1/2−w, v, w], we obtain the ranges
of v and w with MAPLE, Digits:=30.

Smoothness Range of v Range of w

C2 0 < v < 1/2 w = 1/2(v − 1/8)
C3 1/8 < v < 3/8 w = 1/2(v − 1/8)
C4 3/16 1/32

A summary of ranges of two parameters for smoothness of the proposed 4-
point (n = 0) scheme can be seen in Table 1. The segment w = 1/2(v − 1/8)
represents the ranges of C2 and C3 smoothness for 0 < v < 1/2 and 1/8 < v <
3/8, respectively. When v = 3/16 and w = 1/32, the scheme becomes the 6-th
order B-spline scheme which induces C4 smoothness, as known well.

3.2. The proposed 6-point subdivision schemes [19]

For n = 1, we have a mask of the proposed 6-point (n = 1) subdivision
scheme

a(z) = wz−5 + vz−4 − ( 1
16 + 3w)z−3 − 4vz−2 + ( 9

16 + 2w)z−1

+(1 + 6v) + ( 9
16 + 2w)z − 4vz2 − ( 1

16 + 3w)z3 + vz4 + wz5.

In much the same way to the proposed 4-point scheme, we summarize the
range of two parameters v, w for the smoothness Cm,m = 0, 1, . . . , 5 in Table
2.

Table 2. By computing ||(12Sm)10||∞ < 1, m = 1, 2, . . . , 6,
for the proposed 6-point subdivision scheme S with mask
[w, v,−(1/16 + 3w), −4v, 9/16+ 2w, 1 + 6v, 9/16 + 2w, −4v,
−(1/16 + 3w), v, w], we obtain the ranges of v and w with
MAPLE, Digits:=30.

Smoothness Range of v Range of w

C4 −0.0654296875000000< v < −0.0290527343750000 w = v/2 + 3/256
C5 −0.0468750000000000< v < −0.0382050771680549 w = v/2 + 3/256

The proposed subdivision scheme in this work has two free parameters. At
the cost of two parameters, we can see that the proposed scheme can provide
up to C4-smoothness of the basic limit function and the accuracy 6 in Table
1. Here, the accuracy 6 means that the mask has the sum rules of order 6 but
this is different from the accuracy of a subdivision scheme which is determined
by the polynomial reproducing property. Applying some suitable operator Q
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(see [21]) before applying S, S∞Q reproduces polynomials up to degree k − 1,
i.e.,

S∞Qf = f, ∀f ∈ Pk−1.

The main idea of relaxing the minimal support condition is an interesting one;
it leads to a generalization of the DD masks. With specific choices of the
two free parameters, this generalization then includes various other well known
subdivision masks from interpolatory scheme through approximating scheme
including B-spline scheme.
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